Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing

Detalhes bibliográficos
Autor(a) principal: Carvalho, Felipe M.
Data de Publicação: 2022
Outros Autores: Centeno, Dany, Tressia, Gustavo, Avila, Julian A. [UNESP], Cezario, Fabiano E.M., Márquez-Rossy, Andrés, Ariza, Edwan A., Masoumi, Mohammad
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jmrt.2022.04.066
http://hdl.handle.net/11449/240716
Resumo: The constant demand for increasing the strength without ductility loss and production cost encourages industrial and academic societies to propose novel heat treatment processing of commercial steel grades. To improve the mechanical properties of commercial spring steel, a novel quenching and partitioning (Q&P) processing was designed to deliver a complex and desirable nanostructured multicomponent microstructure by controlling the carbon partitioning kinetics. Furthermore, the partitioning of excessive carbon from saturated martensite into untransformed austenite enhances the formation of transition carbides during tempering between 130 and 280 °C. Electron microscopy confirmed a complex multicomponent structure containing BCC tempered lath combined with retained austenite and nanocarbides particles within the tempered laths. Such multicomponent lath-type structure obtained by designed Q&P heat treatment on commercial carbon-silicon spring steel revealed localized mechanical resistance varying from 4.92 GPa for the QP-220-375-400 to 8.22 GPa for the QP-220-325-400 samples determined by nanoindentation test. Moreover, the tensile test showed high ultimate tensile strength and a yield strength up to 1400 MPa and 975 MPa, respectively, in the QP-220-375-400 sample due to a set of complex multicomponent lath-type refined structures designed by Q&P coupled with bainitic transformation, with good strain to fracture (∼0.12%).
id UNSP_1a14aad1fa832ad3c403c61f01526a05
oai_identifier_str oai:repositorio.unesp.br:11449/240716
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processingBoundariesCrystal orientationKernel average misorientationLattice distortionNanoparticlesThe constant demand for increasing the strength without ductility loss and production cost encourages industrial and academic societies to propose novel heat treatment processing of commercial steel grades. To improve the mechanical properties of commercial spring steel, a novel quenching and partitioning (Q&P) processing was designed to deliver a complex and desirable nanostructured multicomponent microstructure by controlling the carbon partitioning kinetics. Furthermore, the partitioning of excessive carbon from saturated martensite into untransformed austenite enhances the formation of transition carbides during tempering between 130 and 280 °C. Electron microscopy confirmed a complex multicomponent structure containing BCC tempered lath combined with retained austenite and nanocarbides particles within the tempered laths. Such multicomponent lath-type structure obtained by designed Q&P heat treatment on commercial carbon-silicon spring steel revealed localized mechanical resistance varying from 4.92 GPa for the QP-220-375-400 to 8.22 GPa for the QP-220-325-400 samples determined by nanoindentation test. Moreover, the tensile test showed high ultimate tensile strength and a yield strength up to 1400 MPa and 975 MPa, respectively, in the QP-220-375-400 sample due to a set of complex multicomponent lath-type refined structures designed by Q&P coupled with bainitic transformation, with good strain to fracture (∼0.12%).Metallurgical Processes Laboratory Institute for Technological Research, Av. Prof. Almeida PradoMetallurgical and Materials Engineering Department University of Sao Paulo, Av. Prof. Mello MoraesInstituto Tecnológico Vale, Av. Juscelino Kubitschek 3 Bauxita, MGDepartment of Strength of Materials and Structural Engineering Barcelona School of Engineering (ETSEIB) Universitat Politècnica de Catalunya, Avda. Diagonal 647Sao Paulo State University (UNESP), São João da Boa Vista SPCenter of Engineering Modelling and Applied Social Sciences Federal University of ABC UFABC, Santo AndreMaterials Science and Technology Division Oak Ridge National LaboratoryEscuela de Tecnología Mecánica Universidad Tecnológica de Pereira, Carrera 27 10-02 AlamosSao Paulo State University (UNESP), São João da Boa Vista SPInstitute for Technological ResearchUniversidade de São Paulo (USP)Instituto Tecnológico ValeUniversitat Politècnica de CatalunyaUniversidade Estadual Paulista (UNESP)Universidade Federal do ABC (UFABC)Oak Ridge National LaboratoryUniversidad Tecnológica de PereiraCarvalho, Felipe M.Centeno, DanyTressia, GustavoAvila, Julian A. [UNESP]Cezario, Fabiano E.M.Márquez-Rossy, AndrésAriza, Edwan A.Masoumi, Mohammad2023-03-01T20:29:45Z2023-03-01T20:29:45Z2022-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4590-4603http://dx.doi.org/10.1016/j.jmrt.2022.04.066Journal of Materials Research and Technology, v. 18, p. 4590-4603.2238-7854http://hdl.handle.net/11449/24071610.1016/j.jmrt.2022.04.0662-s2.0-85136806854Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Materials Research and Technologyinfo:eu-repo/semantics/openAccess2023-03-01T20:29:45Zoai:repositorio.unesp.br:11449/240716Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462023-03-01T20:29:45Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
title Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
spellingShingle Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
Carvalho, Felipe M.
Boundaries
Crystal orientation
Kernel average misorientation
Lattice distortion
Nanoparticles
title_short Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
title_full Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
title_fullStr Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
title_full_unstemmed Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
title_sort Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing
author Carvalho, Felipe M.
author_facet Carvalho, Felipe M.
Centeno, Dany
Tressia, Gustavo
Avila, Julian A. [UNESP]
Cezario, Fabiano E.M.
Márquez-Rossy, Andrés
Ariza, Edwan A.
Masoumi, Mohammad
author_role author
author2 Centeno, Dany
Tressia, Gustavo
Avila, Julian A. [UNESP]
Cezario, Fabiano E.M.
Márquez-Rossy, Andrés
Ariza, Edwan A.
Masoumi, Mohammad
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Institute for Technological Research
Universidade de São Paulo (USP)
Instituto Tecnológico Vale
Universitat Politècnica de Catalunya
Universidade Estadual Paulista (UNESP)
Universidade Federal do ABC (UFABC)
Oak Ridge National Laboratory
Universidad Tecnológica de Pereira
dc.contributor.author.fl_str_mv Carvalho, Felipe M.
Centeno, Dany
Tressia, Gustavo
Avila, Julian A. [UNESP]
Cezario, Fabiano E.M.
Márquez-Rossy, Andrés
Ariza, Edwan A.
Masoumi, Mohammad
dc.subject.por.fl_str_mv Boundaries
Crystal orientation
Kernel average misorientation
Lattice distortion
Nanoparticles
topic Boundaries
Crystal orientation
Kernel average misorientation
Lattice distortion
Nanoparticles
description The constant demand for increasing the strength without ductility loss and production cost encourages industrial and academic societies to propose novel heat treatment processing of commercial steel grades. To improve the mechanical properties of commercial spring steel, a novel quenching and partitioning (Q&P) processing was designed to deliver a complex and desirable nanostructured multicomponent microstructure by controlling the carbon partitioning kinetics. Furthermore, the partitioning of excessive carbon from saturated martensite into untransformed austenite enhances the formation of transition carbides during tempering between 130 and 280 °C. Electron microscopy confirmed a complex multicomponent structure containing BCC tempered lath combined with retained austenite and nanocarbides particles within the tempered laths. Such multicomponent lath-type structure obtained by designed Q&P heat treatment on commercial carbon-silicon spring steel revealed localized mechanical resistance varying from 4.92 GPa for the QP-220-375-400 to 8.22 GPa for the QP-220-325-400 samples determined by nanoindentation test. Moreover, the tensile test showed high ultimate tensile strength and a yield strength up to 1400 MPa and 975 MPa, respectively, in the QP-220-375-400 sample due to a set of complex multicomponent lath-type refined structures designed by Q&P coupled with bainitic transformation, with good strain to fracture (∼0.12%).
publishDate 2022
dc.date.none.fl_str_mv 2022-05-01
2023-03-01T20:29:45Z
2023-03-01T20:29:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jmrt.2022.04.066
Journal of Materials Research and Technology, v. 18, p. 4590-4603.
2238-7854
http://hdl.handle.net/11449/240716
10.1016/j.jmrt.2022.04.066
2-s2.0-85136806854
url http://dx.doi.org/10.1016/j.jmrt.2022.04.066
http://hdl.handle.net/11449/240716
identifier_str_mv Journal of Materials Research and Technology, v. 18, p. 4590-4603.
2238-7854
10.1016/j.jmrt.2022.04.066
2-s2.0-85136806854
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Materials Research and Technology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4590-4603
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826304528832528384