Three time scale singular perturbation problems and nonsmooth dynamical systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1090/S0033-569X-2014-01360-X http://hdl.handle.net/11449/171750 |
Resumo: | In this paper we study three time scale singular perturbation problems where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent small parameters (0 < ε, δ ≪ 1), and f, g, h are Cr functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when ε, δ > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems. |
id |
UNSP_1a765fd799f8614c8456a640c8c1197e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/171750 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Three time scale singular perturbation problems and nonsmooth dynamical systemsIn this paper we study three time scale singular perturbation problems where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent small parameters (0 < ε, δ ≪ 1), and f, g, h are Cr functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when ε, δ > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems.Departamento de Matemática Faculdade de Engenharia de Ilha Solteira UNESP - Univ Estadual Paulista, Rua Rio de Janeiro, 266Departamento de Matemática Instituto de Biocîencias Letras e Cîencias Exatas UNESP - Univ Estadual Paulista, Rua Cristóvão Colombo, 2265IMECC UNICAMPDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira UNESP - Univ Estadual Paulista, Rua Rio de Janeiro, 266Departamento de Matemática Instituto de Biocîencias Letras e Cîencias Exatas UNESP - Univ Estadual Paulista, Rua Cristóvão Colombo, 2265Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Cardin, Pedro T. [UNESP]da Silva, Paulo R. [UNESP]Teixeira, Marco A.2018-12-11T16:56:53Z2018-12-11T16:56:53Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article673-687http://dx.doi.org/10.1090/S0033-569X-2014-01360-XQuarterly of Applied Mathematics, v. 72, n. 4, p. 673-687, 2014.1552-44850033-569Xhttp://hdl.handle.net/11449/17175010.1090/S0033-569X-2014-01360-X2-s2.0-8492015572280328799159066610000-0002-8723-8200Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengQuarterly of Applied Mathematicsinfo:eu-repo/semantics/openAccess2024-07-10T15:41:37Zoai:repositorio.unesp.br:11449/171750Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:45:51.492551Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
title |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
spellingShingle |
Three time scale singular perturbation problems and nonsmooth dynamical systems Cardin, Pedro T. [UNESP] |
title_short |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
title_full |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
title_fullStr |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
title_full_unstemmed |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
title_sort |
Three time scale singular perturbation problems and nonsmooth dynamical systems |
author |
Cardin, Pedro T. [UNESP] |
author_facet |
Cardin, Pedro T. [UNESP] da Silva, Paulo R. [UNESP] Teixeira, Marco A. |
author_role |
author |
author2 |
da Silva, Paulo R. [UNESP] Teixeira, Marco A. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Cardin, Pedro T. [UNESP] da Silva, Paulo R. [UNESP] Teixeira, Marco A. |
description |
In this paper we study three time scale singular perturbation problems where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent small parameters (0 < ε, δ ≪ 1), and f, g, h are Cr functions, where r is big enough for our purposes. We establish conditions for the existence of compact invariant sets (singular points, periodic and homoclinic orbits) when ε, δ > 0. Our main strategy is to consider three time scales which generate three different limit problems. In addition, we prove that double regularization of nonsmooth dynamical systems with self-intersecting switching variety provides a class of three time scale singular perturbation problems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2018-12-11T16:56:53Z 2018-12-11T16:56:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1090/S0033-569X-2014-01360-X Quarterly of Applied Mathematics, v. 72, n. 4, p. 673-687, 2014. 1552-4485 0033-569X http://hdl.handle.net/11449/171750 10.1090/S0033-569X-2014-01360-X 2-s2.0-84920155722 8032879915906661 0000-0002-8723-8200 |
url |
http://dx.doi.org/10.1090/S0033-569X-2014-01360-X http://hdl.handle.net/11449/171750 |
identifier_str_mv |
Quarterly of Applied Mathematics, v. 72, n. 4, p. 673-687, 2014. 1552-4485 0033-569X 10.1090/S0033-569X-2014-01360-X 2-s2.0-84920155722 8032879915906661 0000-0002-8723-8200 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Quarterly of Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
673-687 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128559529590784 |