Fenichel theory for multiple time scale singular perturbation problems

Detalhes bibliográficos
Autor(a) principal: Cardin, Pedro Toniol [UNESP]
Data de Publicação: 2017
Outros Autores: Teixeira, Marco Antonio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1137/16M1067202
http://hdl.handle.net/11449/175363
Resumo: This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales.
id UNSP_93b720680c794a243d4ff6a0c6ddfbaa
oai_identifier_str oai:repositorio.unesp.br:11449/175363
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fenichel theory for multiple time scale singular perturbation problemsFenichel theoryMultiple time scalesSingular perturbationThis paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266Departamento de Matemática Instituto de Matemática Estatística e Computação Científica Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266FAPESP: 2012/18780-0FAPESP: 2013/21947-6FAPESP: 2013/24541-0CNPq: 300596/2009-0CAPES: 88881.030454/2013-01Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Cardin, Pedro Toniol [UNESP]Teixeira, Marco Antonio2018-12-11T17:15:29Z2018-12-11T17:15:29Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1425-1452http://dx.doi.org/10.1137/16M1067202SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017.1536-0040http://hdl.handle.net/11449/17536310.1137/16M10672022-s2.0-8503181431480328799159066610000-0002-8723-8200Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSIAM Journal on Applied Dynamical Systems1,040info:eu-repo/semantics/openAccess2024-07-10T15:41:40Zoai:repositorio.unesp.br:11449/175363Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:29:30.709578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fenichel theory for multiple time scale singular perturbation problems
title Fenichel theory for multiple time scale singular perturbation problems
spellingShingle Fenichel theory for multiple time scale singular perturbation problems
Cardin, Pedro Toniol [UNESP]
Fenichel theory
Multiple time scales
Singular perturbation
title_short Fenichel theory for multiple time scale singular perturbation problems
title_full Fenichel theory for multiple time scale singular perturbation problems
title_fullStr Fenichel theory for multiple time scale singular perturbation problems
title_full_unstemmed Fenichel theory for multiple time scale singular perturbation problems
title_sort Fenichel theory for multiple time scale singular perturbation problems
author Cardin, Pedro Toniol [UNESP]
author_facet Cardin, Pedro Toniol [UNESP]
Teixeira, Marco Antonio
author_role author
author2 Teixeira, Marco Antonio
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Cardin, Pedro Toniol [UNESP]
Teixeira, Marco Antonio
dc.subject.por.fl_str_mv Fenichel theory
Multiple time scales
Singular perturbation
topic Fenichel theory
Multiple time scales
Singular perturbation
description This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-12-11T17:15:29Z
2018-12-11T17:15:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1137/16M1067202
SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017.
1536-0040
http://hdl.handle.net/11449/175363
10.1137/16M1067202
2-s2.0-85031814314
8032879915906661
0000-0002-8723-8200
url http://dx.doi.org/10.1137/16M1067202
http://hdl.handle.net/11449/175363
identifier_str_mv SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017.
1536-0040
10.1137/16M1067202
2-s2.0-85031814314
8032879915906661
0000-0002-8723-8200
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SIAM Journal on Applied Dynamical Systems
1,040
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1425-1452
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128938326622208