Fenichel theory for multiple time scale singular perturbation problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1137/16M1067202 http://hdl.handle.net/11449/175363 |
Resumo: | This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales. |
id |
UNSP_93b720680c794a243d4ff6a0c6ddfbaa |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175363 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fenichel theory for multiple time scale singular perturbation problemsFenichel theoryMultiple time scalesSingular perturbationThis paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266Departamento de Matemática Instituto de Matemática Estatística e Computação Científica Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266FAPESP: 2012/18780-0FAPESP: 2013/21947-6FAPESP: 2013/24541-0CNPq: 300596/2009-0CAPES: 88881.030454/2013-01Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Cardin, Pedro Toniol [UNESP]Teixeira, Marco Antonio2018-12-11T17:15:29Z2018-12-11T17:15:29Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1425-1452http://dx.doi.org/10.1137/16M1067202SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017.1536-0040http://hdl.handle.net/11449/17536310.1137/16M10672022-s2.0-8503181431480328799159066610000-0002-8723-8200Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSIAM Journal on Applied Dynamical Systems1,040info:eu-repo/semantics/openAccess2024-07-10T15:41:40Zoai:repositorio.unesp.br:11449/175363Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:29:30.709578Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fenichel theory for multiple time scale singular perturbation problems |
title |
Fenichel theory for multiple time scale singular perturbation problems |
spellingShingle |
Fenichel theory for multiple time scale singular perturbation problems Cardin, Pedro Toniol [UNESP] Fenichel theory Multiple time scales Singular perturbation |
title_short |
Fenichel theory for multiple time scale singular perturbation problems |
title_full |
Fenichel theory for multiple time scale singular perturbation problems |
title_fullStr |
Fenichel theory for multiple time scale singular perturbation problems |
title_full_unstemmed |
Fenichel theory for multiple time scale singular perturbation problems |
title_sort |
Fenichel theory for multiple time scale singular perturbation problems |
author |
Cardin, Pedro Toniol [UNESP] |
author_facet |
Cardin, Pedro Toniol [UNESP] Teixeira, Marco Antonio |
author_role |
author |
author2 |
Teixeira, Marco Antonio |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Cardin, Pedro Toniol [UNESP] Teixeira, Marco Antonio |
dc.subject.por.fl_str_mv |
Fenichel theory Multiple time scales Singular perturbation |
topic |
Fenichel theory Multiple time scales Singular perturbation |
description |
This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-12-11T17:15:29Z 2018-12-11T17:15:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1137/16M1067202 SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017. 1536-0040 http://hdl.handle.net/11449/175363 10.1137/16M1067202 2-s2.0-85031814314 8032879915906661 0000-0002-8723-8200 |
url |
http://dx.doi.org/10.1137/16M1067202 http://hdl.handle.net/11449/175363 |
identifier_str_mv |
SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017. 1536-0040 10.1137/16M1067202 2-s2.0-85031814314 8032879915906661 0000-0002-8723-8200 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SIAM Journal on Applied Dynamical Systems 1,040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1425-1452 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128938326622208 |