Evaluation of statistical and Haralick texture features for lymphoma histological images classification

Detalhes bibliográficos
Autor(a) principal: Azevedo Tosta, Thaína A.
Data de Publicação: 2021
Outros Autores: de Faria, Paulo R., Neves, Leandro A. [UNESP], do Nascimento, Marcelo Z.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/21681163.2021.1902401
http://hdl.handle.net/11449/206110
Resumo: The investigation of different types of cancer can be performed by images classification with features extracted from specific regions identified by a segmentation step. Therefore, this study presents the evaluation of texture features extracted from neoplastic nuclei for the classification of lymphomas images. The neoplastic nuclei were segmented by steps of pre and post-processing and a thresholding. Statistical and Haralick’s features extracted from wavelet and ranklet transforms were evaluated with different classifiers. The use of the statistical metrics from the wavelet transform in association with the K-nearest neighbour classifier provided the best results in most of the two-class classifications.
id UNSP_1aceb1e43948392b4e1bf2ce1515e623
oai_identifier_str oai:repositorio.unesp.br:11449/206110
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Evaluation of statistical and Haralick texture features for lymphoma histological images classificationclassificationLymphoma histological imagesnuclear segmentationtexture featureswavelet and ranklet transformsThe investigation of different types of cancer can be performed by images classification with features extracted from specific regions identified by a segmentation step. Therefore, this study presents the evaluation of texture features extracted from neoplastic nuclei for the classification of lymphomas images. The neoplastic nuclei were segmented by steps of pre and post-processing and a thresholding. Statistical and Haralick’s features extracted from wavelet and ranklet transforms were evaluated with different classifiers. The use of the statistical metrics from the wavelet transform in association with the K-nearest neighbour classifier provided the best results in most of the two-class classifications.Center of Mathematics Computer Science and Cognition Federal University of ABC (UFABC)Science and Technology Institute Federal University of São Paulo (UNIFESP)Department of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia (UFU)Department of Computer Science and Statistics São Paulo State University (UNESP)Faculty of Computer Science Federal University of Uberlândia (UFU)Department of Computer Science and Statistics São Paulo State University (UNESP)Universidade Federal do ABC (UFABC)Universidade de São Paulo (USP)Universidade Federal de Uberlândia (UFU)Universidade Estadual Paulista (Unesp)Azevedo Tosta, Thaína A.de Faria, Paulo R.Neves, Leandro A. [UNESP]do Nascimento, Marcelo Z.2021-06-25T10:26:43Z2021-06-25T10:26:43Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1080/21681163.2021.1902401Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.2168-11712168-1163http://hdl.handle.net/11449/20611010.1080/21681163.2021.19024012-s2.0-85103246655Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualizationinfo:eu-repo/semantics/openAccess2021-10-22T21:03:00Zoai:repositorio.unesp.br:11449/206110Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:15.821748Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Evaluation of statistical and Haralick texture features for lymphoma histological images classification
title Evaluation of statistical and Haralick texture features for lymphoma histological images classification
spellingShingle Evaluation of statistical and Haralick texture features for lymphoma histological images classification
Azevedo Tosta, Thaína A.
classification
Lymphoma histological images
nuclear segmentation
texture features
wavelet and ranklet transforms
title_short Evaluation of statistical and Haralick texture features for lymphoma histological images classification
title_full Evaluation of statistical and Haralick texture features for lymphoma histological images classification
title_fullStr Evaluation of statistical and Haralick texture features for lymphoma histological images classification
title_full_unstemmed Evaluation of statistical and Haralick texture features for lymphoma histological images classification
title_sort Evaluation of statistical and Haralick texture features for lymphoma histological images classification
author Azevedo Tosta, Thaína A.
author_facet Azevedo Tosta, Thaína A.
de Faria, Paulo R.
Neves, Leandro A. [UNESP]
do Nascimento, Marcelo Z.
author_role author
author2 de Faria, Paulo R.
Neves, Leandro A. [UNESP]
do Nascimento, Marcelo Z.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do ABC (UFABC)
Universidade de São Paulo (USP)
Universidade Federal de Uberlândia (UFU)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Azevedo Tosta, Thaína A.
de Faria, Paulo R.
Neves, Leandro A. [UNESP]
do Nascimento, Marcelo Z.
dc.subject.por.fl_str_mv classification
Lymphoma histological images
nuclear segmentation
texture features
wavelet and ranklet transforms
topic classification
Lymphoma histological images
nuclear segmentation
texture features
wavelet and ranklet transforms
description The investigation of different types of cancer can be performed by images classification with features extracted from specific regions identified by a segmentation step. Therefore, this study presents the evaluation of texture features extracted from neoplastic nuclei for the classification of lymphomas images. The neoplastic nuclei were segmented by steps of pre and post-processing and a thresholding. Statistical and Haralick’s features extracted from wavelet and ranklet transforms were evaluated with different classifiers. The use of the statistical metrics from the wavelet transform in association with the K-nearest neighbour classifier provided the best results in most of the two-class classifications.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:26:43Z
2021-06-25T10:26:43Z
2021-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/21681163.2021.1902401
Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.
2168-1171
2168-1163
http://hdl.handle.net/11449/206110
10.1080/21681163.2021.1902401
2-s2.0-85103246655
url http://dx.doi.org/10.1080/21681163.2021.1902401
http://hdl.handle.net/11449/206110
identifier_str_mv Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.
2168-1171
2168-1163
10.1080/21681163.2021.1902401
2-s2.0-85103246655
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129260913688576