Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-77538-8_4 http://hdl.handle.net/11449/164253 |
Resumo: | For disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function. |
id |
UNSP_7f7d57b1dde749c9098f6659e112ef17 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164253 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic AlgorithmNuclear segmentationLymphoma histological images Genetic algorithmFitness function evaluationFor disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fed Univ ABC, Ctr Math Comp & Cognit, Santo Andre, BrazilUniv Fed Uberlandia, Inst Biomed Sci, Dept Histol & Morphol, Uberlandia, MG, BrazilSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, BrazilUniv Fed Uberlandia, Fac Comp Sci, Uberlandia, MG, BrazilSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, BrazilCAPES: 1575210FAPEMIG: TEC - APQ-02885-15SpringerUniversidade Federal do ABC (UFABC)Universidade Federal de Uberlândia (UFU)Universidade Estadual Paulista (Unesp)Tosta, Thaina A. A.Faria, Paulo Rogerio deNeves, Leandro Alves [UNESP]Nascimento, Marcelo Zanchetta doSim, K.Kaufmann, P.Ascheid, G.Bacardit, J.Cagnoni, S.Cotta, C.DAndreagiovanni, F.Divina, F.EsparciaAlcazar, A. L.DeVega, F. F.Glette, K.Hidalgo, J. I.Hubert, J.Iacca, G.Kramer, O.Mavrovouniotis, M.Garcia, AMMNguyen, T. T.Schaefer, R.Silva, S.Tonda, A.Urquhart, N.Zhang, M.2018-11-26T17:51:51Z2018-11-26T17:51:51Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject47-62application/pdfhttp://dx.doi.org/10.1007/978-3-319-77538-8_4Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018.0302-9743http://hdl.handle.net/11449/16425310.1007/978-3-319-77538-8_4WOS:000433244800004WOS000433244800004.pdf2139053814879312Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplications Of Evolutionary Computation, Evoapplications 20180,295info:eu-repo/semantics/openAccess2023-12-21T06:20:05Zoai:repositorio.unesp.br:11449/164253Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:53.080501Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
title |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
spellingShingle |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm Tosta, Thaina A. A. Nuclear segmentation Lymphoma histological images Genetic algorithm Fitness function evaluation |
title_short |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
title_full |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
title_fullStr |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
title_full_unstemmed |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
title_sort |
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm |
author |
Tosta, Thaina A. A. |
author_facet |
Tosta, Thaina A. A. Faria, Paulo Rogerio de Neves, Leandro Alves [UNESP] Nascimento, Marcelo Zanchetta do Sim, K. Kaufmann, P. Ascheid, G. Bacardit, J. Cagnoni, S. Cotta, C. DAndreagiovanni, F. Divina, F. EsparciaAlcazar, A. L. DeVega, F. F. Glette, K. Hidalgo, J. I. Hubert, J. Iacca, G. Kramer, O. Mavrovouniotis, M. Garcia, AMM Nguyen, T. T. Schaefer, R. Silva, S. Tonda, A. Urquhart, N. Zhang, M. |
author_role |
author |
author2 |
Faria, Paulo Rogerio de Neves, Leandro Alves [UNESP] Nascimento, Marcelo Zanchetta do Sim, K. Kaufmann, P. Ascheid, G. Bacardit, J. Cagnoni, S. Cotta, C. DAndreagiovanni, F. Divina, F. EsparciaAlcazar, A. L. DeVega, F. F. Glette, K. Hidalgo, J. I. Hubert, J. Iacca, G. Kramer, O. Mavrovouniotis, M. Garcia, AMM Nguyen, T. T. Schaefer, R. Silva, S. Tonda, A. Urquhart, N. Zhang, M. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do ABC (UFABC) Universidade Federal de Uberlândia (UFU) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tosta, Thaina A. A. Faria, Paulo Rogerio de Neves, Leandro Alves [UNESP] Nascimento, Marcelo Zanchetta do Sim, K. Kaufmann, P. Ascheid, G. Bacardit, J. Cagnoni, S. Cotta, C. DAndreagiovanni, F. Divina, F. EsparciaAlcazar, A. L. DeVega, F. F. Glette, K. Hidalgo, J. I. Hubert, J. Iacca, G. Kramer, O. Mavrovouniotis, M. Garcia, AMM Nguyen, T. T. Schaefer, R. Silva, S. Tonda, A. Urquhart, N. Zhang, M. |
dc.subject.por.fl_str_mv |
Nuclear segmentation Lymphoma histological images Genetic algorithm Fitness function evaluation |
topic |
Nuclear segmentation Lymphoma histological images Genetic algorithm Fitness function evaluation |
description |
For disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26T17:51:51Z 2018-11-26T17:51:51Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-77538-8_4 Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018. 0302-9743 http://hdl.handle.net/11449/164253 10.1007/978-3-319-77538-8_4 WOS:000433244800004 WOS000433244800004.pdf 2139053814879312 |
url |
http://dx.doi.org/10.1007/978-3-319-77538-8_4 http://hdl.handle.net/11449/164253 |
identifier_str_mv |
Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018. 0302-9743 10.1007/978-3-319-77538-8_4 WOS:000433244800004 WOS000433244800004.pdf 2139053814879312 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applications Of Evolutionary Computation, Evoapplications 2018 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
47-62 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129261662371840 |