Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm

Detalhes bibliográficos
Autor(a) principal: Tosta, Thaina A. A.
Data de Publicação: 2018
Outros Autores: Faria, Paulo Rogerio de, Neves, Leandro Alves [UNESP], Nascimento, Marcelo Zanchetta do, Sim, K., Kaufmann, P., Ascheid, G., Bacardit, J., Cagnoni, S., Cotta, C., DAndreagiovanni, F., Divina, F., EsparciaAlcazar, A. L., DeVega, F. F., Glette, K., Hidalgo, J. I., Hubert, J., Iacca, G., Kramer, O., Mavrovouniotis, M., Garcia, AMM, Nguyen, T. T., Schaefer, R., Silva, S., Tonda, A., Urquhart, N., Zhang, M.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-77538-8_4
http://hdl.handle.net/11449/164253
Resumo: For disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.
id UNSP_7f7d57b1dde749c9098f6659e112ef17
oai_identifier_str oai:repositorio.unesp.br:11449/164253
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic AlgorithmNuclear segmentationLymphoma histological images Genetic algorithmFitness function evaluationFor disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fed Univ ABC, Ctr Math Comp & Cognit, Santo Andre, BrazilUniv Fed Uberlandia, Inst Biomed Sci, Dept Histol & Morphol, Uberlandia, MG, BrazilSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, BrazilUniv Fed Uberlandia, Fac Comp Sci, Uberlandia, MG, BrazilSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, BrazilCAPES: 1575210FAPEMIG: TEC - APQ-02885-15SpringerUniversidade Federal do ABC (UFABC)Universidade Federal de Uberlândia (UFU)Universidade Estadual Paulista (Unesp)Tosta, Thaina A. A.Faria, Paulo Rogerio deNeves, Leandro Alves [UNESP]Nascimento, Marcelo Zanchetta doSim, K.Kaufmann, P.Ascheid, G.Bacardit, J.Cagnoni, S.Cotta, C.DAndreagiovanni, F.Divina, F.EsparciaAlcazar, A. L.DeVega, F. F.Glette, K.Hidalgo, J. I.Hubert, J.Iacca, G.Kramer, O.Mavrovouniotis, M.Garcia, AMMNguyen, T. T.Schaefer, R.Silva, S.Tonda, A.Urquhart, N.Zhang, M.2018-11-26T17:51:51Z2018-11-26T17:51:51Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject47-62application/pdfhttp://dx.doi.org/10.1007/978-3-319-77538-8_4Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018.0302-9743http://hdl.handle.net/11449/16425310.1007/978-3-319-77538-8_4WOS:000433244800004WOS000433244800004.pdf2139053814879312Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplications Of Evolutionary Computation, Evoapplications 20180,295info:eu-repo/semantics/openAccess2023-12-21T06:20:05Zoai:repositorio.unesp.br:11449/164253Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:53.080501Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
title Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
spellingShingle Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
Tosta, Thaina A. A.
Nuclear segmentation
Lymphoma histological images Genetic algorithm
Fitness function evaluation
title_short Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
title_full Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
title_fullStr Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
title_full_unstemmed Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
title_sort Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm
author Tosta, Thaina A. A.
author_facet Tosta, Thaina A. A.
Faria, Paulo Rogerio de
Neves, Leandro Alves [UNESP]
Nascimento, Marcelo Zanchetta do
Sim, K.
Kaufmann, P.
Ascheid, G.
Bacardit, J.
Cagnoni, S.
Cotta, C.
DAndreagiovanni, F.
Divina, F.
EsparciaAlcazar, A. L.
DeVega, F. F.
Glette, K.
Hidalgo, J. I.
Hubert, J.
Iacca, G.
Kramer, O.
Mavrovouniotis, M.
Garcia, AMM
Nguyen, T. T.
Schaefer, R.
Silva, S.
Tonda, A.
Urquhart, N.
Zhang, M.
author_role author
author2 Faria, Paulo Rogerio de
Neves, Leandro Alves [UNESP]
Nascimento, Marcelo Zanchetta do
Sim, K.
Kaufmann, P.
Ascheid, G.
Bacardit, J.
Cagnoni, S.
Cotta, C.
DAndreagiovanni, F.
Divina, F.
EsparciaAlcazar, A. L.
DeVega, F. F.
Glette, K.
Hidalgo, J. I.
Hubert, J.
Iacca, G.
Kramer, O.
Mavrovouniotis, M.
Garcia, AMM
Nguyen, T. T.
Schaefer, R.
Silva, S.
Tonda, A.
Urquhart, N.
Zhang, M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do ABC (UFABC)
Universidade Federal de Uberlândia (UFU)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Tosta, Thaina A. A.
Faria, Paulo Rogerio de
Neves, Leandro Alves [UNESP]
Nascimento, Marcelo Zanchetta do
Sim, K.
Kaufmann, P.
Ascheid, G.
Bacardit, J.
Cagnoni, S.
Cotta, C.
DAndreagiovanni, F.
Divina, F.
EsparciaAlcazar, A. L.
DeVega, F. F.
Glette, K.
Hidalgo, J. I.
Hubert, J.
Iacca, G.
Kramer, O.
Mavrovouniotis, M.
Garcia, AMM
Nguyen, T. T.
Schaefer, R.
Silva, S.
Tonda, A.
Urquhart, N.
Zhang, M.
dc.subject.por.fl_str_mv Nuclear segmentation
Lymphoma histological images Genetic algorithm
Fitness function evaluation
topic Nuclear segmentation
Lymphoma histological images Genetic algorithm
Fitness function evaluation
description For disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T17:51:51Z
2018-11-26T17:51:51Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-77538-8_4
Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018.
0302-9743
http://hdl.handle.net/11449/164253
10.1007/978-3-319-77538-8_4
WOS:000433244800004
WOS000433244800004.pdf
2139053814879312
url http://dx.doi.org/10.1007/978-3-319-77538-8_4
http://hdl.handle.net/11449/164253
identifier_str_mv Applications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018.
0302-9743
10.1007/978-3-319-77538-8_4
WOS:000433244800004
WOS000433244800004.pdf
2139053814879312
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applications Of Evolutionary Computation, Evoapplications 2018
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 47-62
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129261662371840