A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function

Detalhes bibliográficos
Autor(a) principal: Simões, Alexandre da Silva [UNESP]
Data de Publicação: 2008
Outros Autores: Reali Costa, Anna Helena, Zaverucha, G, LoureiroDaCosta, A
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-540-88190-2_28
http://hdl.handle.net/11449/214
Resumo: Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.
id UNSP_1bcbfc95e2ef9327bcfd9101843a6e29
oai_identifier_str oai:repositorio.unesp.br:11449/214
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis FunctionSpiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.São Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, BrazilSão Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, BrazilSpringer-verlag BerlinUniversidade Estadual Paulista (Unesp)Simões, Alexandre da Silva [UNESP]Reali Costa, Anna HelenaZaverucha, GLoureiroDaCosta, A2014-05-20T13:12:14Z2014-05-20T13:12:14Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject227-236http://dx.doi.org/10.1007/978-3-540-88190-2_28Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008.0302-9743http://hdl.handle.net/11449/21410.1007/978-3-540-88190-2_28WOS:0002613732000282-s2.0-57049154145Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances In Artificial Intelligence - Sbia 2008, Proceedings0,295info:eu-repo/semantics/openAccess2021-10-23T21:41:41Zoai:repositorio.unesp.br:11449/214Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:29.525191Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
title A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
spellingShingle A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
Simões, Alexandre da Silva [UNESP]
title_short A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
title_full A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
title_fullStr A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
title_full_unstemmed A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
title_sort A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
author Simões, Alexandre da Silva [UNESP]
author_facet Simões, Alexandre da Silva [UNESP]
Reali Costa, Anna Helena
Zaverucha, G
LoureiroDaCosta, A
author_role author
author2 Reali Costa, Anna Helena
Zaverucha, G
LoureiroDaCosta, A
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Simões, Alexandre da Silva [UNESP]
Reali Costa, Anna Helena
Zaverucha, G
LoureiroDaCosta, A
description Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
2014-05-20T13:12:14Z
2014-05-20T13:12:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-540-88190-2_28
Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008.
0302-9743
http://hdl.handle.net/11449/214
10.1007/978-3-540-88190-2_28
WOS:000261373200028
2-s2.0-57049154145
url http://dx.doi.org/10.1007/978-3-540-88190-2_28
http://hdl.handle.net/11449/214
identifier_str_mv Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008.
0302-9743
10.1007/978-3-540-88190-2_28
WOS:000261373200028
2-s2.0-57049154145
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances In Artificial Intelligence - Sbia 2008, Proceedings
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 227-236
dc.publisher.none.fl_str_mv Springer-verlag Berlin
publisher.none.fl_str_mv Springer-verlag Berlin
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129459528663040