A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-540-88190-2_28 http://hdl.handle.net/11449/214 |
Resumo: | Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor. |
id |
UNSP_1bcbfc95e2ef9327bcfd9101843a6e29 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/214 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis FunctionSpiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.São Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, BrazilSão Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, BrazilSpringer-verlag BerlinUniversidade Estadual Paulista (Unesp)Simões, Alexandre da Silva [UNESP]Reali Costa, Anna HelenaZaverucha, GLoureiroDaCosta, A2014-05-20T13:12:14Z2014-05-20T13:12:14Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject227-236http://dx.doi.org/10.1007/978-3-540-88190-2_28Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008.0302-9743http://hdl.handle.net/11449/21410.1007/978-3-540-88190-2_28WOS:0002613732000282-s2.0-57049154145Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances In Artificial Intelligence - Sbia 2008, Proceedings0,295info:eu-repo/semantics/openAccess2021-10-23T21:41:41Zoai:repositorio.unesp.br:11449/214Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:45:29.525191Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
title |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
spellingShingle |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function Simões, Alexandre da Silva [UNESP] |
title_short |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
title_full |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
title_fullStr |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
title_full_unstemmed |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
title_sort |
A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function |
author |
Simões, Alexandre da Silva [UNESP] |
author_facet |
Simões, Alexandre da Silva [UNESP] Reali Costa, Anna Helena Zaverucha, G LoureiroDaCosta, A |
author_role |
author |
author2 |
Reali Costa, Anna Helena Zaverucha, G LoureiroDaCosta, A |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Simões, Alexandre da Silva [UNESP] Reali Costa, Anna Helena Zaverucha, G LoureiroDaCosta, A |
description |
Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 2014-05-20T13:12:14Z 2014-05-20T13:12:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-540-88190-2_28 Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008. 0302-9743 http://hdl.handle.net/11449/214 10.1007/978-3-540-88190-2_28 WOS:000261373200028 2-s2.0-57049154145 |
url |
http://dx.doi.org/10.1007/978-3-540-88190-2_28 http://hdl.handle.net/11449/214 |
identifier_str_mv |
Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008. 0302-9743 10.1007/978-3-540-88190-2_28 WOS:000261373200028 2-s2.0-57049154145 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances In Artificial Intelligence - Sbia 2008, Proceedings 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
227-236 |
dc.publisher.none.fl_str_mv |
Springer-verlag Berlin |
publisher.none.fl_str_mv |
Springer-verlag Berlin |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129459528663040 |