A new distribution for service model with state dependent service rate
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICoIA.2013.6650272 http://hdl.handle.net/11449/220009 |
Resumo: | In this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE. |
id |
UNSP_1c45dca7ad45c472da78a521825253af |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220009 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A new distribution for service model with state dependent service rateConwayMaxwell-Poisson distributionminimum service timesuper-serverIn this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE.Universidade Federal de Mato Grosso, CuiabáUniversidade de São Paulo, São CarlosUniv. Estadual Paulista, Presidente PrudenteUniversidade Federal de São Carlos, São CarlosUniv. Estadual Paulista, Presidente PrudenteUniversidade Federal de Mato GrossoUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de São Carlos (UFSCar)Prado, Silvia MariaLouzada, FranciscoRinaldi, José Gilberto [UNESP]Benze, Benedito Galvão2022-04-28T18:59:10Z2022-04-28T18:59:10Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject294-299http://dx.doi.org/10.1109/ICoIA.2013.66502722013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299.http://hdl.handle.net/11449/22000910.1109/ICoIA.2013.66502722-s2.0-84891749194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 2nd International Conference on Informatics and Applications, ICIA 2013info:eu-repo/semantics/openAccess2022-04-28T18:59:10Zoai:repositorio.unesp.br:11449/220009Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:34.145454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A new distribution for service model with state dependent service rate |
title |
A new distribution for service model with state dependent service rate |
spellingShingle |
A new distribution for service model with state dependent service rate Prado, Silvia Maria Conway Maxwell-Poisson distribution minimum service time super-server |
title_short |
A new distribution for service model with state dependent service rate |
title_full |
A new distribution for service model with state dependent service rate |
title_fullStr |
A new distribution for service model with state dependent service rate |
title_full_unstemmed |
A new distribution for service model with state dependent service rate |
title_sort |
A new distribution for service model with state dependent service rate |
author |
Prado, Silvia Maria |
author_facet |
Prado, Silvia Maria Louzada, Francisco Rinaldi, José Gilberto [UNESP] Benze, Benedito Galvão |
author_role |
author |
author2 |
Louzada, Francisco Rinaldi, José Gilberto [UNESP] Benze, Benedito Galvão |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Mato Grosso Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Prado, Silvia Maria Louzada, Francisco Rinaldi, José Gilberto [UNESP] Benze, Benedito Galvão |
dc.subject.por.fl_str_mv |
Conway Maxwell-Poisson distribution minimum service time super-server |
topic |
Conway Maxwell-Poisson distribution minimum service time super-server |
description |
In this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2022-04-28T18:59:10Z 2022-04-28T18:59:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICoIA.2013.6650272 2013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299. http://hdl.handle.net/11449/220009 10.1109/ICoIA.2013.6650272 2-s2.0-84891749194 |
url |
http://dx.doi.org/10.1109/ICoIA.2013.6650272 http://hdl.handle.net/11449/220009 |
identifier_str_mv |
2013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299. 10.1109/ICoIA.2013.6650272 2-s2.0-84891749194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2013 2nd International Conference on Informatics and Applications, ICIA 2013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
294-299 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129261034274816 |