A new distribution for service model with state dependent service rate

Detalhes bibliográficos
Autor(a) principal: Prado, Silvia Maria
Data de Publicação: 2013
Outros Autores: Louzada, Francisco, Rinaldi, José Gilberto [UNESP], Benze, Benedito Galvão
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ICoIA.2013.6650272
http://hdl.handle.net/11449/220009
Resumo: In this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE.
id UNSP_1c45dca7ad45c472da78a521825253af
oai_identifier_str oai:repositorio.unesp.br:11449/220009
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A new distribution for service model with state dependent service rateConwayMaxwell-Poisson distributionminimum service timesuper-serverIn this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE.Universidade Federal de Mato Grosso, CuiabáUniversidade de São Paulo, São CarlosUniv. Estadual Paulista, Presidente PrudenteUniversidade Federal de São Carlos, São CarlosUniv. Estadual Paulista, Presidente PrudenteUniversidade Federal de Mato GrossoUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de São Carlos (UFSCar)Prado, Silvia MariaLouzada, FranciscoRinaldi, José Gilberto [UNESP]Benze, Benedito Galvão2022-04-28T18:59:10Z2022-04-28T18:59:10Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject294-299http://dx.doi.org/10.1109/ICoIA.2013.66502722013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299.http://hdl.handle.net/11449/22000910.1109/ICoIA.2013.66502722-s2.0-84891749194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 2nd International Conference on Informatics and Applications, ICIA 2013info:eu-repo/semantics/openAccess2022-04-28T18:59:10Zoai:repositorio.unesp.br:11449/220009Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:34.145454Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A new distribution for service model with state dependent service rate
title A new distribution for service model with state dependent service rate
spellingShingle A new distribution for service model with state dependent service rate
Prado, Silvia Maria
Conway
Maxwell-Poisson distribution
minimum service time
super-server
title_short A new distribution for service model with state dependent service rate
title_full A new distribution for service model with state dependent service rate
title_fullStr A new distribution for service model with state dependent service rate
title_full_unstemmed A new distribution for service model with state dependent service rate
title_sort A new distribution for service model with state dependent service rate
author Prado, Silvia Maria
author_facet Prado, Silvia Maria
Louzada, Francisco
Rinaldi, José Gilberto [UNESP]
Benze, Benedito Galvão
author_role author
author2 Louzada, Francisco
Rinaldi, José Gilberto [UNESP]
Benze, Benedito Galvão
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Mato Grosso
Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Prado, Silvia Maria
Louzada, Francisco
Rinaldi, José Gilberto [UNESP]
Benze, Benedito Galvão
dc.subject.por.fl_str_mv Conway
Maxwell-Poisson distribution
minimum service time
super-server
topic Conway
Maxwell-Poisson distribution
minimum service time
super-server
description In this paper, we introduced a new distribution for the minimum service time in the system with a superserver, the Minimum-Conway-Maxwell-Poisson- exponential distribution (or MINCOMPE distribution). The service was attached to the arrival. Owing this fact, the service finishes when a customer arrives. The MINCOMPE distribution contains submodels, such as, the Minimum-geometric- exponential, Minimum-Poisson-exponential and Minimum-Bernoulli-exponential. As a result, it incorporates the variability of the system when the pressure parameter changes due to the decrease of the interarrival times. The properties of the proposed distribution were discussed and explicit algebraic formulas for their reliability and moments, including the mean and the variance. The parameter estimation was based on the usual maximum likelihood method. The methodology was illustrated on real data. © 2013 IEEE.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2022-04-28T18:59:10Z
2022-04-28T18:59:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ICoIA.2013.6650272
2013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299.
http://hdl.handle.net/11449/220009
10.1109/ICoIA.2013.6650272
2-s2.0-84891749194
url http://dx.doi.org/10.1109/ICoIA.2013.6650272
http://hdl.handle.net/11449/220009
identifier_str_mv 2013 2nd International Conference on Informatics and Applications, ICIA 2013, p. 294-299.
10.1109/ICoIA.2013.6650272
2-s2.0-84891749194
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2013 2nd International Conference on Informatics and Applications, ICIA 2013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 294-299
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129261034274816