A DISTRIBUTION FOR THE SERVICE MODEL
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555 |
Resumo: | ABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model. |
id |
SOBRAPO-1_78a312afdf99b993cc4c01dfd86ab3b1 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382015000300555 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A DISTRIBUTION FOR THE SERVICE MODELMAXCOMPE distributionservice rateserverABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model.Sociedade Brasileira de Pesquisa Operacional2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555Pesquisa Operacional v.35 n.3 2015reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2015.035.03.0555info:eu-repo/semantics/openAccessPrado,Silvia MariaLouzada,FranciscoRinaldi,José Gilberto S.Benze,Benedito Galvãoeng2016-01-26T00:00:00Zoai:scielo:S0101-74382015000300555Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2016-01-26T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A DISTRIBUTION FOR THE SERVICE MODEL |
title |
A DISTRIBUTION FOR THE SERVICE MODEL |
spellingShingle |
A DISTRIBUTION FOR THE SERVICE MODEL Prado,Silvia Maria MAXCOMPE distribution service rate server |
title_short |
A DISTRIBUTION FOR THE SERVICE MODEL |
title_full |
A DISTRIBUTION FOR THE SERVICE MODEL |
title_fullStr |
A DISTRIBUTION FOR THE SERVICE MODEL |
title_full_unstemmed |
A DISTRIBUTION FOR THE SERVICE MODEL |
title_sort |
A DISTRIBUTION FOR THE SERVICE MODEL |
author |
Prado,Silvia Maria |
author_facet |
Prado,Silvia Maria Louzada,Francisco Rinaldi,José Gilberto S. Benze,Benedito Galvão |
author_role |
author |
author2 |
Louzada,Francisco Rinaldi,José Gilberto S. Benze,Benedito Galvão |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Prado,Silvia Maria Louzada,Francisco Rinaldi,José Gilberto S. Benze,Benedito Galvão |
dc.subject.por.fl_str_mv |
MAXCOMPE distribution service rate server |
topic |
MAXCOMPE distribution service rate server |
description |
ABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2015.035.03.0555 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.35 n.3 2015 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017819967488 |