A DISTRIBUTION FOR THE SERVICE MODEL

Detalhes bibliográficos
Autor(a) principal: Prado,Silvia Maria
Data de Publicação: 2015
Outros Autores: Louzada,Francisco, Rinaldi,José Gilberto S., Benze,Benedito Galvão
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555
Resumo: ABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model.
id SOBRAPO-1_78a312afdf99b993cc4c01dfd86ab3b1
oai_identifier_str oai:scielo:S0101-74382015000300555
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling A DISTRIBUTION FOR THE SERVICE MODELMAXCOMPE distributionservice rateserverABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model.Sociedade Brasileira de Pesquisa Operacional2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555Pesquisa Operacional v.35 n.3 2015reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2015.035.03.0555info:eu-repo/semantics/openAccessPrado,Silvia MariaLouzada,FranciscoRinaldi,José Gilberto S.Benze,Benedito Galvãoeng2016-01-26T00:00:00Zoai:scielo:S0101-74382015000300555Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2016-01-26T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv A DISTRIBUTION FOR THE SERVICE MODEL
title A DISTRIBUTION FOR THE SERVICE MODEL
spellingShingle A DISTRIBUTION FOR THE SERVICE MODEL
Prado,Silvia Maria
MAXCOMPE distribution
service rate
server
title_short A DISTRIBUTION FOR THE SERVICE MODEL
title_full A DISTRIBUTION FOR THE SERVICE MODEL
title_fullStr A DISTRIBUTION FOR THE SERVICE MODEL
title_full_unstemmed A DISTRIBUTION FOR THE SERVICE MODEL
title_sort A DISTRIBUTION FOR THE SERVICE MODEL
author Prado,Silvia Maria
author_facet Prado,Silvia Maria
Louzada,Francisco
Rinaldi,José Gilberto S.
Benze,Benedito Galvão
author_role author
author2 Louzada,Francisco
Rinaldi,José Gilberto S.
Benze,Benedito Galvão
author2_role author
author
author
dc.contributor.author.fl_str_mv Prado,Silvia Maria
Louzada,Francisco
Rinaldi,José Gilberto S.
Benze,Benedito Galvão
dc.subject.por.fl_str_mv MAXCOMPE distribution
service rate
server
topic MAXCOMPE distribution
service rate
server
description ABSTRACT In this paper, we propose a distribution that describes a specific system. The system has a heavy traffic, a fast service and the service rate depends on state of the system. This distribution we call the Maximum-Conway-Maxwell-Poisson-exponential distribution, denoted by MAXCOMPE distribution. The MAXCOMPE distribution is obtained by compound distributions in which we use the zero truncated Conway-Maxwell-Poisson distribution and the exponential distribution. This distribution has adjustment mechanism in order to re-establish the equilibrium of the system when the traffic flow increases and that is described by variations of the pressure parameter. Because of this, the MAXCOMPE distribution contains sub-models, such as, the Maximum-geometric-exponential distribution, the Maximum-Poisson-exponential distribution and the Maximum-Bernoulli-exponential distribution. The properties of the proposed distribution are discussed, including formal proof of its density function and explicit algebraic formulas for their reliability function and moments. The parameter estimation is based on the usual maximum likelihood method. Simulated and real data are shown to illustrate the applicability of the model.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382015000300555
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2015.035.03.0555
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.35 n.3 2015
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318017819967488