PAR-COM: A new methodology for post-processing association rules
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-29958-2_5 http://hdl.handle.net/11449/73368 |
Resumo: | The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag. |
id |
UNSP_1d089cd0c96977c93336e0c551163602 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73368 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
PAR-COM: A new methodology for post-processing association rulesAssociation rulesClusteringObjective measuresPost-processingExperimental studiesObjective measurePost processingInformation systemsThe post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag.Univ. Estadual Paulista (Unesp), Rio Claro, SPUniversidade de São Paulo (USP), São Carlos, SPUniv. Estadual Paulista (Unesp), Rio Claro, SPUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)De Carvalho, Veronica Oliveira [UNESP]Dos Santos, Fabiano FernandesRezende, Solange OliveiraDe Padua, Renan [UNESP]2014-05-27T11:26:50Z2014-05-27T11:26:50Z2012-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject66-80http://dx.doi.org/10.1007/978-3-642-29958-2_5Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80.1865-1348http://hdl.handle.net/11449/7336810.1007/978-3-642-29958-2_52-s2.0-84861668130Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Business Information Processing0,222info:eu-repo/semantics/openAccess2021-10-23T21:41:43Zoai:repositorio.unesp.br:11449/73368Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:07.122036Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
PAR-COM: A new methodology for post-processing association rules |
title |
PAR-COM: A new methodology for post-processing association rules |
spellingShingle |
PAR-COM: A new methodology for post-processing association rules De Carvalho, Veronica Oliveira [UNESP] Association rules Clustering Objective measures Post-processing Experimental studies Objective measure Post processing Information systems |
title_short |
PAR-COM: A new methodology for post-processing association rules |
title_full |
PAR-COM: A new methodology for post-processing association rules |
title_fullStr |
PAR-COM: A new methodology for post-processing association rules |
title_full_unstemmed |
PAR-COM: A new methodology for post-processing association rules |
title_sort |
PAR-COM: A new methodology for post-processing association rules |
author |
De Carvalho, Veronica Oliveira [UNESP] |
author_facet |
De Carvalho, Veronica Oliveira [UNESP] Dos Santos, Fabiano Fernandes Rezende, Solange Oliveira De Padua, Renan [UNESP] |
author_role |
author |
author2 |
Dos Santos, Fabiano Fernandes Rezende, Solange Oliveira De Padua, Renan [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
De Carvalho, Veronica Oliveira [UNESP] Dos Santos, Fabiano Fernandes Rezende, Solange Oliveira De Padua, Renan [UNESP] |
dc.subject.por.fl_str_mv |
Association rules Clustering Objective measures Post-processing Experimental studies Objective measure Post processing Information systems |
topic |
Association rules Clustering Objective measures Post-processing Experimental studies Objective measure Post processing Information systems |
description |
The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-05 2014-05-27T11:26:50Z 2014-05-27T11:26:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-29958-2_5 Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80. 1865-1348 http://hdl.handle.net/11449/73368 10.1007/978-3-642-29958-2_5 2-s2.0-84861668130 |
url |
http://dx.doi.org/10.1007/978-3-642-29958-2_5 http://hdl.handle.net/11449/73368 |
identifier_str_mv |
Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80. 1865-1348 10.1007/978-3-642-29958-2_5 2-s2.0-84861668130 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Business Information Processing 0,222 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
66-80 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128897507655680 |