PAR-COM: A new methodology for post-processing association rules

Detalhes bibliográficos
Autor(a) principal: De Carvalho, Veronica Oliveira [UNESP]
Data de Publicação: 2012
Outros Autores: Dos Santos, Fabiano Fernandes, Rezende, Solange Oliveira, De Padua, Renan [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-642-29958-2_5
http://hdl.handle.net/11449/73368
Resumo: The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag.
id UNSP_1d089cd0c96977c93336e0c551163602
oai_identifier_str oai:repositorio.unesp.br:11449/73368
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling PAR-COM: A new methodology for post-processing association rulesAssociation rulesClusteringObjective measuresPost-processingExperimental studiesObjective measurePost processingInformation systemsThe post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag.Univ. Estadual Paulista (Unesp), Rio Claro, SPUniversidade de São Paulo (USP), São Carlos, SPUniv. Estadual Paulista (Unesp), Rio Claro, SPUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)De Carvalho, Veronica Oliveira [UNESP]Dos Santos, Fabiano FernandesRezende, Solange OliveiraDe Padua, Renan [UNESP]2014-05-27T11:26:50Z2014-05-27T11:26:50Z2012-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject66-80http://dx.doi.org/10.1007/978-3-642-29958-2_5Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80.1865-1348http://hdl.handle.net/11449/7336810.1007/978-3-642-29958-2_52-s2.0-84861668130Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Business Information Processing0,222info:eu-repo/semantics/openAccess2021-10-23T21:41:43Zoai:repositorio.unesp.br:11449/73368Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:07.122036Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv PAR-COM: A new methodology for post-processing association rules
title PAR-COM: A new methodology for post-processing association rules
spellingShingle PAR-COM: A new methodology for post-processing association rules
De Carvalho, Veronica Oliveira [UNESP]
Association rules
Clustering
Objective measures
Post-processing
Experimental studies
Objective measure
Post processing
Information systems
title_short PAR-COM: A new methodology for post-processing association rules
title_full PAR-COM: A new methodology for post-processing association rules
title_fullStr PAR-COM: A new methodology for post-processing association rules
title_full_unstemmed PAR-COM: A new methodology for post-processing association rules
title_sort PAR-COM: A new methodology for post-processing association rules
author De Carvalho, Veronica Oliveira [UNESP]
author_facet De Carvalho, Veronica Oliveira [UNESP]
Dos Santos, Fabiano Fernandes
Rezende, Solange Oliveira
De Padua, Renan [UNESP]
author_role author
author2 Dos Santos, Fabiano Fernandes
Rezende, Solange Oliveira
De Padua, Renan [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv De Carvalho, Veronica Oliveira [UNESP]
Dos Santos, Fabiano Fernandes
Rezende, Solange Oliveira
De Padua, Renan [UNESP]
dc.subject.por.fl_str_mv Association rules
Clustering
Objective measures
Post-processing
Experimental studies
Objective measure
Post processing
Information systems
topic Association rules
Clustering
Objective measures
Post-processing
Experimental studies
Objective measure
Post processing
Information systems
description The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process. © 2012 Springer-Verlag.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-05
2014-05-27T11:26:50Z
2014-05-27T11:26:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-642-29958-2_5
Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80.
1865-1348
http://hdl.handle.net/11449/73368
10.1007/978-3-642-29958-2_5
2-s2.0-84861668130
url http://dx.doi.org/10.1007/978-3-642-29958-2_5
http://hdl.handle.net/11449/73368
identifier_str_mv Lecture Notes in Business Information Processing, v. 102 LNBIP, p. 66-80.
1865-1348
10.1007/978-3-642-29958-2_5
2-s2.0-84861668130
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Business Information Processing
0,222
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 66-80
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128897507655680