PAR-COM: A New Methodology for Post-processing Association Rules

Detalhes bibliográficos
Autor(a) principal: Carvalho, Veronica Oliveira de [UNESP]
Data de Publicação: 2012
Outros Autores: Santos, Fabiano Fernandes dos, Rezende, Solange Oliveira, Padua, Renan de [UNESP], Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/197437
Resumo: The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process.
id UNSP_701b3de0fbc2188638be45182bd28d62
oai_identifier_str oai:repositorio.unesp.br:11449/197437
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling PAR-COM: A New Methodology for Post-processing Association RulesAssociation rulesPost-processingClusteringObjective measuresThe post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista Unesp, Rio Claro, SP, BrazilUniv Sao Paulo, Sao Carlos, SP, BrazilUniv Estadual Paulista Unesp, Rio Claro, SP, BrazilFAPESP: 2010/07879-0SpringerUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Carvalho, Veronica Oliveira de [UNESP]Santos, Fabiano Fernandes dosRezende, Solange OliveiraPadua, Renan de [UNESP]Zhang, R.Zhang, J.Zhang, Z.Filipe, J.Cordeiro, J.2020-12-10T22:31:33Z2020-12-10T22:31:33Z2012-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject66-80Enterprise Information Systems, Iceis 2011. Berlin: Springer-verlag Berlin, v. 102, p. 66-80, 2012.1865-1348http://hdl.handle.net/11449/197437WOS:000345339600005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEnterprise Information Systems, Iceis 2011info:eu-repo/semantics/openAccess2021-10-23T14:40:35Zoai:repositorio.unesp.br:11449/197437Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:48:11.800343Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv PAR-COM: A New Methodology for Post-processing Association Rules
title PAR-COM: A New Methodology for Post-processing Association Rules
spellingShingle PAR-COM: A New Methodology for Post-processing Association Rules
Carvalho, Veronica Oliveira de [UNESP]
Association rules
Post-processing
Clustering
Objective measures
title_short PAR-COM: A New Methodology for Post-processing Association Rules
title_full PAR-COM: A New Methodology for Post-processing Association Rules
title_fullStr PAR-COM: A New Methodology for Post-processing Association Rules
title_full_unstemmed PAR-COM: A New Methodology for Post-processing Association Rules
title_sort PAR-COM: A New Methodology for Post-processing Association Rules
author Carvalho, Veronica Oliveira de [UNESP]
author_facet Carvalho, Veronica Oliveira de [UNESP]
Santos, Fabiano Fernandes dos
Rezende, Solange Oliveira
Padua, Renan de [UNESP]
Zhang, R.
Zhang, J.
Zhang, Z.
Filipe, J.
Cordeiro, J.
author_role author
author2 Santos, Fabiano Fernandes dos
Rezende, Solange Oliveira
Padua, Renan de [UNESP]
Zhang, R.
Zhang, J.
Zhang, Z.
Filipe, J.
Cordeiro, J.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Carvalho, Veronica Oliveira de [UNESP]
Santos, Fabiano Fernandes dos
Rezende, Solange Oliveira
Padua, Renan de [UNESP]
Zhang, R.
Zhang, J.
Zhang, Z.
Filipe, J.
Cordeiro, J.
dc.subject.por.fl_str_mv Association rules
Post-processing
Clustering
Objective measures
topic Association rules
Post-processing
Clustering
Objective measures
description The post-processing of association rules is a difficult task, since a huge number of rules that are generated are of no interest to the user. To overcome this problem many approaches have been developed, such as objective measures and clustering. However, objective measures don't reduce nor organize the collection of rules, therefore making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, therefore making the search for relevant knowledge not so easy. In this context this paper presents the PAR-COM methodology that, by combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. An experimental study demonstrates the potential of PAR-COM to minimize the user's effort during the post-processing process.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01
2020-12-10T22:31:33Z
2020-12-10T22:31:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Enterprise Information Systems, Iceis 2011. Berlin: Springer-verlag Berlin, v. 102, p. 66-80, 2012.
1865-1348
http://hdl.handle.net/11449/197437
WOS:000345339600005
identifier_str_mv Enterprise Information Systems, Iceis 2011. Berlin: Springer-verlag Berlin, v. 102, p. 66-80, 2012.
1865-1348
WOS:000345339600005
url http://hdl.handle.net/11449/197437
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Enterprise Information Systems, Iceis 2011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 66-80
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128420420255744