Generalized growth curve model for COVID-19 in Brazilian states

Detalhes bibliográficos
Autor(a) principal: Amaral, Magali Teresopolis Reis
Data de Publicação: 2020
Outros Autores: Conceição, Katiane Silva, de ANDRADE, Marinho Gomes, Padovani, Carlos Roberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.28951/rbb.v38i2.481
http://hdl.handle.net/11449/206724
Resumo: The present paper consists of using the Chapman-Richard generalized growth model to functionally relate the number of people infected by COVID-19 with the number of days. The objective of this work is to estimate the instant that the number of infected people stops growing using the dataset of the accumulated amount of infected. For this propose, one conducted a comparative study of the performances of three models of Richard in eight Brazilian States. In the methodological context, the Gauss Newton procedure was used to estimate the parameters. In addition, selection criteria of the models were used to select the one that best fits the dataset. The methodology used allowed consistent estimates of the number of people infected by COVID-19 as a function of time and, consequently, it was possible to conclude that the projections provided by the growth curves point to a scenario of general contamination acceleration. Besides, the models predict that the epidemic is close to reaching its peak in Amazonas, Ceará, Maranhão, Pernambuco, and São Paulo States.
id UNSP_1ef4624c9ecfaf32f6dcf59a64f0a5b5
oai_identifier_str oai:repositorio.unesp.br:11449/206724
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Generalized growth curve model for COVID-19 in Brazilian statesModelo de curva de crescimento generalizado para COVID-19 nos estados brasileirosCorona virusGauss Newton methodGeneralized Richard modelGrowth curvesThe present paper consists of using the Chapman-Richard generalized growth model to functionally relate the number of people infected by COVID-19 with the number of days. The objective of this work is to estimate the instant that the number of infected people stops growing using the dataset of the accumulated amount of infected. For this propose, one conducted a comparative study of the performances of three models of Richard in eight Brazilian States. In the methodological context, the Gauss Newton procedure was used to estimate the parameters. In addition, selection criteria of the models were used to select the one that best fits the dataset. The methodology used allowed consistent estimates of the number of people infected by COVID-19 as a function of time and, consequently, it was possible to conclude that the projections provided by the growth curves point to a scenario of general contamination acceleration. Besides, the models predict that the epidemic is close to reaching its peak in Amazonas, Ceará, Maranhão, Pernambuco, and São Paulo States.Universidade Estadual de Feira de Santana-UEFS Departamento de Ciências ExatasUniversidade de São Paulo-USP Instituto de Ciências Matemáticas e Computação Departamento de Matemática Aplicada e Estatística, Caixa Postal 668Universidade Estadual Paulista-UNESP Instituto de Biociências Departamento de BioestatísticaUniversidade Estadual Paulista-UNESP Instituto de Biociências Departamento de BioestatísticaUniversidade Estadual de Feira de Santana-UEFSUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Amaral, Magali Teresopolis ReisConceição, Katiane Silvade ANDRADE, Marinho GomesPadovani, Carlos Roberto [UNESP]2021-06-25T10:37:05Z2021-06-25T10:37:05Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article125-146http://dx.doi.org/10.28951/rbb.v38i2.481Revista Brasileira de Biometria, v. 38, n. 2, p. 125-146, 2020.1983-0823http://hdl.handle.net/11449/20672410.28951/rbb.v38i2.4812-s2.0-85093892651Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Biometriainfo:eu-repo/semantics/openAccess2021-10-23T12:31:26Zoai:repositorio.unesp.br:11449/206724Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:03:31.280503Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Generalized growth curve model for COVID-19 in Brazilian states
Modelo de curva de crescimento generalizado para COVID-19 nos estados brasileiros
title Generalized growth curve model for COVID-19 in Brazilian states
spellingShingle Generalized growth curve model for COVID-19 in Brazilian states
Amaral, Magali Teresopolis Reis
Corona virus
Gauss Newton method
Generalized Richard model
Growth curves
title_short Generalized growth curve model for COVID-19 in Brazilian states
title_full Generalized growth curve model for COVID-19 in Brazilian states
title_fullStr Generalized growth curve model for COVID-19 in Brazilian states
title_full_unstemmed Generalized growth curve model for COVID-19 in Brazilian states
title_sort Generalized growth curve model for COVID-19 in Brazilian states
author Amaral, Magali Teresopolis Reis
author_facet Amaral, Magali Teresopolis Reis
Conceição, Katiane Silva
de ANDRADE, Marinho Gomes
Padovani, Carlos Roberto [UNESP]
author_role author
author2 Conceição, Katiane Silva
de ANDRADE, Marinho Gomes
Padovani, Carlos Roberto [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Feira de Santana-UEFS
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Amaral, Magali Teresopolis Reis
Conceição, Katiane Silva
de ANDRADE, Marinho Gomes
Padovani, Carlos Roberto [UNESP]
dc.subject.por.fl_str_mv Corona virus
Gauss Newton method
Generalized Richard model
Growth curves
topic Corona virus
Gauss Newton method
Generalized Richard model
Growth curves
description The present paper consists of using the Chapman-Richard generalized growth model to functionally relate the number of people infected by COVID-19 with the number of days. The objective of this work is to estimate the instant that the number of infected people stops growing using the dataset of the accumulated amount of infected. For this propose, one conducted a comparative study of the performances of three models of Richard in eight Brazilian States. In the methodological context, the Gauss Newton procedure was used to estimate the parameters. In addition, selection criteria of the models were used to select the one that best fits the dataset. The methodology used allowed consistent estimates of the number of people infected by COVID-19 as a function of time and, consequently, it was possible to conclude that the projections provided by the growth curves point to a scenario of general contamination acceleration. Besides, the models predict that the epidemic is close to reaching its peak in Amazonas, Ceará, Maranhão, Pernambuco, and São Paulo States.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-25T10:37:05Z
2021-06-25T10:37:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.28951/rbb.v38i2.481
Revista Brasileira de Biometria, v. 38, n. 2, p. 125-146, 2020.
1983-0823
http://hdl.handle.net/11449/206724
10.28951/rbb.v38i2.481
2-s2.0-85093892651
url http://dx.doi.org/10.28951/rbb.v38i2.481
http://hdl.handle.net/11449/206724
identifier_str_mv Revista Brasileira de Biometria, v. 38, n. 2, p. 125-146, 2020.
1983-0823
10.28951/rbb.v38i2.481
2-s2.0-85093892651
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Brasileira de Biometria
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 125-146
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128747649368064