Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats

Detalhes bibliográficos
Autor(a) principal: Amaral, Magali Teresopolis Reis [UNESP]
Data de Publicação: 2020
Outros Autores: Padovani, Carlos Roberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/23737484.2020.1752848
http://hdl.handle.net/11449/232991
Resumo: There is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment.
id UNSP_ec108de7e97187973eaf37ce8c19a17e
oai_identifier_str oai:repositorio.unesp.br:11449/232991
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in ratsCardiac remodelinggrowth curvemaximum likelihoodThere is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment.Department of Exact Sciences State University of Feira de SantanaDepartment of Biostatistics Institute of Biosciences Paulista State UniversityDepartment of Biostatistics Institute of Biosciences Paulista State UniversityState University of Feira de SantanaUniversidade Estadual Paulista (UNESP)Amaral, Magali Teresopolis Reis [UNESP]Padovani, Carlos Roberto [UNESP]2022-04-30T23:21:34Z2022-04-30T23:21:34Z2020-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article215-227http://dx.doi.org/10.1080/23737484.2020.1752848Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020.2373-7484http://hdl.handle.net/11449/23299110.1080/23737484.2020.17528482-s2.0-85084267473Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications in Statistics Case Studies Data Analysis and Applicationsinfo:eu-repo/semantics/openAccess2022-04-30T23:21:34Zoai:repositorio.unesp.br:11449/232991Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:10:07.784887Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
title Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
spellingShingle Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
Amaral, Magali Teresopolis Reis [UNESP]
Cardiac remodeling
growth curve
maximum likelihood
title_short Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
title_full Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
title_fullStr Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
title_full_unstemmed Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
title_sort Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
author Amaral, Magali Teresopolis Reis [UNESP]
author_facet Amaral, Magali Teresopolis Reis [UNESP]
Padovani, Carlos Roberto [UNESP]
author_role author
author2 Padovani, Carlos Roberto [UNESP]
author2_role author
dc.contributor.none.fl_str_mv State University of Feira de Santana
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Amaral, Magali Teresopolis Reis [UNESP]
Padovani, Carlos Roberto [UNESP]
dc.subject.por.fl_str_mv Cardiac remodeling
growth curve
maximum likelihood
topic Cardiac remodeling
growth curve
maximum likelihood
description There is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-02
2022-04-30T23:21:34Z
2022-04-30T23:21:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/23737484.2020.1752848
Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020.
2373-7484
http://hdl.handle.net/11449/232991
10.1080/23737484.2020.1752848
2-s2.0-85084267473
url http://dx.doi.org/10.1080/23737484.2020.1752848
http://hdl.handle.net/11449/232991
identifier_str_mv Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020.
2373-7484
10.1080/23737484.2020.1752848
2-s2.0-85084267473
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Communications in Statistics Case Studies Data Analysis and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 215-227
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128473423675392