Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/23737484.2020.1752848 http://hdl.handle.net/11449/232991 |
Resumo: | There is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment. |
id |
UNSP_ec108de7e97187973eaf37ce8c19a17e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232991 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in ratsCardiac remodelinggrowth curvemaximum likelihoodThere is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment.Department of Exact Sciences State University of Feira de SantanaDepartment of Biostatistics Institute of Biosciences Paulista State UniversityDepartment of Biostatistics Institute of Biosciences Paulista State UniversityState University of Feira de SantanaUniversidade Estadual Paulista (UNESP)Amaral, Magali Teresopolis Reis [UNESP]Padovani, Carlos Roberto [UNESP]2022-04-30T23:21:34Z2022-04-30T23:21:34Z2020-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article215-227http://dx.doi.org/10.1080/23737484.2020.1752848Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020.2373-7484http://hdl.handle.net/11449/23299110.1080/23737484.2020.17528482-s2.0-85084267473Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications in Statistics Case Studies Data Analysis and Applicationsinfo:eu-repo/semantics/openAccess2022-04-30T23:21:34Zoai:repositorio.unesp.br:11449/232991Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:10:07.784887Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
title |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
spellingShingle |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats Amaral, Magali Teresopolis Reis [UNESP] Cardiac remodeling growth curve maximum likelihood |
title_short |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
title_full |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
title_fullStr |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
title_full_unstemmed |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
title_sort |
Growth curves with multivariate θ generalized normal distribution for cardiac dysfunction in rats |
author |
Amaral, Magali Teresopolis Reis [UNESP] |
author_facet |
Amaral, Magali Teresopolis Reis [UNESP] Padovani, Carlos Roberto [UNESP] |
author_role |
author |
author2 |
Padovani, Carlos Roberto [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
State University of Feira de Santana Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Amaral, Magali Teresopolis Reis [UNESP] Padovani, Carlos Roberto [UNESP] |
dc.subject.por.fl_str_mv |
Cardiac remodeling growth curve maximum likelihood |
topic |
Cardiac remodeling growth curve maximum likelihood |
description |
There is a necessity to study the behavior of some characteristic in the same sample unit over time in many situations, as accumulated dose of some nutrient. In practice, data structure of this nature generally establishes nonlinear behaviors in the parameters. The objective of this work is to accomplish a comparative study on the performance of four models of growth curves in four experimental groups, considering multivariate θ generalized standard errors with homoscedastic structure with the presence of lag-1 autocorrelation. Maximum likelihood estimation is used and simulation techniques are implemented to prove the methodological attributes used the experiment. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-02 2022-04-30T23:21:34Z 2022-04-30T23:21:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/23737484.2020.1752848 Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020. 2373-7484 http://hdl.handle.net/11449/232991 10.1080/23737484.2020.1752848 2-s2.0-85084267473 |
url |
http://dx.doi.org/10.1080/23737484.2020.1752848 http://hdl.handle.net/11449/232991 |
identifier_str_mv |
Communications in Statistics Case Studies Data Analysis and Applications, v. 6, n. 2, p. 215-227, 2020. 2373-7484 10.1080/23737484.2020.1752848 2-s2.0-85084267473 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Communications in Statistics Case Studies Data Analysis and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
215-227 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128473423675392 |