Time Dependent Billiards

Detalhes bibliográficos
Autor(a) principal: Leonel, Edson Denis [UNESP]
Data de Publicação: 2021
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-981-16-3544-1_13
http://hdl.handle.net/11449/233480
Resumo: We discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration.
id UNSP_1f2820d8856ba1c19156f6451dea4c47
oai_identifier_str oai:repositorio.unesp.br:11449/233480
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Time Dependent BilliardsWe discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration.Departmamento de Física Sao Paulo State UniversityDepartmamento de Física Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Leonel, Edson Denis [UNESP]2022-05-01T08:45:04Z2022-05-01T08:45:04Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart181-190http://dx.doi.org/10.1007/978-981-16-3544-1_13Nonlinear Physical Science, p. 181-190.1867-84591867-8440http://hdl.handle.net/11449/23348010.1007/978-981-16-3544-1_132-s2.0-85114292964Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Physical Scienceinfo:eu-repo/semantics/openAccess2022-05-01T08:45:04Zoai:repositorio.unesp.br:11449/233480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:56.953993Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Time Dependent Billiards
title Time Dependent Billiards
spellingShingle Time Dependent Billiards
Leonel, Edson Denis [UNESP]
title_short Time Dependent Billiards
title_full Time Dependent Billiards
title_fullStr Time Dependent Billiards
title_full_unstemmed Time Dependent Billiards
title_sort Time Dependent Billiards
author Leonel, Edson Denis [UNESP]
author_facet Leonel, Edson Denis [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Leonel, Edson Denis [UNESP]
description We discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-05-01T08:45:04Z
2022-05-01T08:45:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-981-16-3544-1_13
Nonlinear Physical Science, p. 181-190.
1867-8459
1867-8440
http://hdl.handle.net/11449/233480
10.1007/978-981-16-3544-1_13
2-s2.0-85114292964
url http://dx.doi.org/10.1007/978-981-16-3544-1_13
http://hdl.handle.net/11449/233480
identifier_str_mv Nonlinear Physical Science, p. 181-190.
1867-8459
1867-8440
10.1007/978-981-16-3544-1_13
2-s2.0-85114292964
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Physical Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 181-190
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128235687378944