Time Dependent Billiards
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-981-16-3544-1_13 http://hdl.handle.net/11449/233480 |
Resumo: | We discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration. |
id |
UNSP_1f2820d8856ba1c19156f6451dea4c47 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/233480 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Time Dependent BilliardsWe discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration.Departmamento de Física Sao Paulo State UniversityDepartmamento de Física Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Leonel, Edson Denis [UNESP]2022-05-01T08:45:04Z2022-05-01T08:45:04Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart181-190http://dx.doi.org/10.1007/978-981-16-3544-1_13Nonlinear Physical Science, p. 181-190.1867-84591867-8440http://hdl.handle.net/11449/23348010.1007/978-981-16-3544-1_132-s2.0-85114292964Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Physical Scienceinfo:eu-repo/semantics/openAccess2022-05-01T08:45:04Zoai:repositorio.unesp.br:11449/233480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:35:56.953993Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Time Dependent Billiards |
title |
Time Dependent Billiards |
spellingShingle |
Time Dependent Billiards Leonel, Edson Denis [UNESP] |
title_short |
Time Dependent Billiards |
title_full |
Time Dependent Billiards |
title_fullStr |
Time Dependent Billiards |
title_full_unstemmed |
Time Dependent Billiards |
title_sort |
Time Dependent Billiards |
author |
Leonel, Edson Denis [UNESP] |
author_facet |
Leonel, Edson Denis [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Leonel, Edson Denis [UNESP] |
description |
We discuss in this chapter some dynamical properties for time dependent billiards. We construct the equations of the mapping that describe the dynamics of the particles considering that the velocity of the particle is given by the application of the momentum conservation law at each impact with the moving boundary. After the collision, the velocity of the particle changes, consequently a new pair of variables is added to the usual pair of angular variables, namely the velocity of the particle after the collision and the instant of the collision. We discuss the Loskutov–Ryabov–Akinshin (LRA) conjecture that says the existence of chaos in the billiard with static boundary is sufficient condition for the Fermi acceleration (unlimited energy growth) when the particle is time dependent. The conjecture was tested in the oval billiard leading to the unlimited energy growth. In the elliptical billiard, which is integrable for the fixed boundary, the time dependency of the boundary transforms the separatrix curve into a distribution of points called as stochastic layer hence leading to the unlimited energy growth and producing the Fermi acceleration. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-05-01T08:45:04Z 2022-05-01T08:45:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-981-16-3544-1_13 Nonlinear Physical Science, p. 181-190. 1867-8459 1867-8440 http://hdl.handle.net/11449/233480 10.1007/978-981-16-3544-1_13 2-s2.0-85114292964 |
url |
http://dx.doi.org/10.1007/978-981-16-3544-1_13 http://hdl.handle.net/11449/233480 |
identifier_str_mv |
Nonlinear Physical Science, p. 181-190. 1867-8459 1867-8440 10.1007/978-981-16-3544-1_13 2-s2.0-85114292964 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Physical Science |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
181-190 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128235687378944 |