Methodology for mapping quantum and reversible circuits to IBM Q architectures

Detalhes bibliográficos
Autor(a) principal: Almeida, Alexandre Araujo Amaral de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/190680
Resumo: Research in the field of quantum circuits has increased as technology advances in the development of quantum computers. IBM offers access to quantum computers via the cloud service called IBM Q. However, these architectures have some restrictions regarding the types of quantum gates that can be realized. This work proposes a methodology for the mapping of quantum and reversible circuits to the architectures made available by the IBM Q project. The methodology consists in finding CNOT mappings using a set of defined qubits movements to satisfy the architectures constraints by adding as few gates as possible. In order to reduce the number of CNOT gates needing mapping, the permutation of the circuit can be changed. One alternative to find this permutation is trough exhaustive search. However, is not feasible as the number of qubit increases. To solve this problem, the permutation problem was formulated as an Integer Linear Programming problem. The mapping of quantum circuits realized with non-implementable gates and reversible Toffoli circuits to the IBM quantum architectures were proposed in this work as well. This was done by adapting the developed CNOT mappings along with the Integer Linear Programming formulation. The proposed methodology was evaluated by mapping quantum and reversible circuits to an IBM quantum architectures with 5 and 16 qubits. The results were compared with two algorithms that map quantum circuits to IBM architectures. The cost metric used in the evaluation were the number of quantum gates and the number of levels (depth) of the circuits. Experimental results have shown that the proposed methodology outperforms the other approaches regarding the circuits' size. The results of the methodology used to implement quantum (with non-implementable gates) and Toffoli circuits to IBM architectures have shown that the mapping targeting a specific architecture constraints results in a smaller mapped circuit. The methodology developed can be easily adapted to any quantum architecture. Also, the proposed Integer Linear Programming formulation can be used in any reversible circuit and can be applied in other research areas.
id UNSP_1f72de37f6a34a0392b8ff5dacc642b5
oai_identifier_str oai:repositorio.unesp.br:11449/190680
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Methodology for mapping quantum and reversible circuits to IBM Q architecturesMetodologia para o mapeamento de circuitos quânticos e reversíveis para arquiteturas IBM QIBM QQuantum computationLinear programmingReversible logicComputação quânticaProgramação linearLógica reversívelResearch in the field of quantum circuits has increased as technology advances in the development of quantum computers. IBM offers access to quantum computers via the cloud service called IBM Q. However, these architectures have some restrictions regarding the types of quantum gates that can be realized. This work proposes a methodology for the mapping of quantum and reversible circuits to the architectures made available by the IBM Q project. The methodology consists in finding CNOT mappings using a set of defined qubits movements to satisfy the architectures constraints by adding as few gates as possible. In order to reduce the number of CNOT gates needing mapping, the permutation of the circuit can be changed. One alternative to find this permutation is trough exhaustive search. However, is not feasible as the number of qubit increases. To solve this problem, the permutation problem was formulated as an Integer Linear Programming problem. The mapping of quantum circuits realized with non-implementable gates and reversible Toffoli circuits to the IBM quantum architectures were proposed in this work as well. This was done by adapting the developed CNOT mappings along with the Integer Linear Programming formulation. The proposed methodology was evaluated by mapping quantum and reversible circuits to an IBM quantum architectures with 5 and 16 qubits. The results were compared with two algorithms that map quantum circuits to IBM architectures. The cost metric used in the evaluation were the number of quantum gates and the number of levels (depth) of the circuits. Experimental results have shown that the proposed methodology outperforms the other approaches regarding the circuits' size. The results of the methodology used to implement quantum (with non-implementable gates) and Toffoli circuits to IBM architectures have shown that the mapping targeting a specific architecture constraints results in a smaller mapped circuit. The methodology developed can be easily adapted to any quantum architecture. Also, the proposed Integer Linear Programming formulation can be used in any reversible circuit and can be applied in other research areas.Pesquisa no campo de circuitos quânticos tem alavancado conforme a tecnologia avança no desenvolvimento de computadores quânticos. Atualmente, a IBM oferece acesso a computadores quânticos através do serviço em nuvem chamado IBM Q. No entanto, essas arquiteturas têm algumas restrições com relação aos tipos de portas quânticas e qubits em que uma porta CNOT pode ser implementada. Neste trabalho foi proposta uma metodologia para o mapeamento de circuitos quânticos e reversíveis para as arquiteturas disponibilizadas pelo projeto IBM Q. A metodologia consiste em mapear as portas CNOT utilizando uma série de movimentos de qubits, mantendo a permutação do circuito inalterada. A fim de reduzir o número de portas CNOT não implementáveis, a permutação do circuito pode ser alterada. Uma alternativa para encontrar essa permutação é a busca exaustiva. No entanto, é inviável conforme o número de qubits aumenta. Para resolver este problema, o problema de permutação foi formulado como um problema de Programação Linear Inteira. Como a metodologia é facilmente adaptável, o mapeamento de circuitos quânticos utilizando portas quânticas não implementáveis e circuitos reversíveis Toffoli também foram propostas neste trabalho. A avaliação da metodologia proposta foi feita com a realização do mapeamento de circuitos quânticos e reversíveis para arquiteturas quânticas com 5 e 16 qubits. Os resultados foram comparados com dois algoritmos que mapeiam circuitos quânticos para arquiteturas IBM. A métrica de custo utilizada na avaliação foram o número portas quânticas e o número de níveis do circuito. Os resultados experimentais mostraram que a metodologia proposta obteve melhor desempenho comparado com as outras abordagens, mesmo mantendo a permutação inalterada. Com relação à implementação dos circuitos quânticos não implementáveis e circuitos Toffoli para arquiteturas da IBM, os resultados mostraram que o mapeamento visando uma arquitetura específica resulta em circuitos mais otimizados. Uma outra característica da metodologia é que pode ser adaptada para qualquer arquitetura quântica. E também, a Programação Linear Inteira pode ser utilizada em qualquer tipo de circuito reversível, podendo ser aplicada em outras áreas de pesquisa.OutraCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 001PDSE: 88881.189547/2018-01Universidade Estadual Paulista (Unesp)Silva, Alexandre César Rodrigues da [UNESP]Dueck, Gerhard W.Universidade Estadual Paulista (Unesp)Almeida, Alexandre Araujo Amaral de2019-10-09T16:47:24Z2019-10-09T16:47:24Z2019-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19068000092582333004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:59:00Zoai:repositorio.unesp.br:11449/190680Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:59Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Methodology for mapping quantum and reversible circuits to IBM Q architectures
Metodologia para o mapeamento de circuitos quânticos e reversíveis para arquiteturas IBM Q
title Methodology for mapping quantum and reversible circuits to IBM Q architectures
spellingShingle Methodology for mapping quantum and reversible circuits to IBM Q architectures
Almeida, Alexandre Araujo Amaral de
IBM Q
Quantum computation
Linear programming
Reversible logic
Computação quântica
Programação linear
Lógica reversível
title_short Methodology for mapping quantum and reversible circuits to IBM Q architectures
title_full Methodology for mapping quantum and reversible circuits to IBM Q architectures
title_fullStr Methodology for mapping quantum and reversible circuits to IBM Q architectures
title_full_unstemmed Methodology for mapping quantum and reversible circuits to IBM Q architectures
title_sort Methodology for mapping quantum and reversible circuits to IBM Q architectures
author Almeida, Alexandre Araujo Amaral de
author_facet Almeida, Alexandre Araujo Amaral de
author_role author
dc.contributor.none.fl_str_mv Silva, Alexandre César Rodrigues da [UNESP]
Dueck, Gerhard W.
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Almeida, Alexandre Araujo Amaral de
dc.subject.por.fl_str_mv IBM Q
Quantum computation
Linear programming
Reversible logic
Computação quântica
Programação linear
Lógica reversível
topic IBM Q
Quantum computation
Linear programming
Reversible logic
Computação quântica
Programação linear
Lógica reversível
description Research in the field of quantum circuits has increased as technology advances in the development of quantum computers. IBM offers access to quantum computers via the cloud service called IBM Q. However, these architectures have some restrictions regarding the types of quantum gates that can be realized. This work proposes a methodology for the mapping of quantum and reversible circuits to the architectures made available by the IBM Q project. The methodology consists in finding CNOT mappings using a set of defined qubits movements to satisfy the architectures constraints by adding as few gates as possible. In order to reduce the number of CNOT gates needing mapping, the permutation of the circuit can be changed. One alternative to find this permutation is trough exhaustive search. However, is not feasible as the number of qubit increases. To solve this problem, the permutation problem was formulated as an Integer Linear Programming problem. The mapping of quantum circuits realized with non-implementable gates and reversible Toffoli circuits to the IBM quantum architectures were proposed in this work as well. This was done by adapting the developed CNOT mappings along with the Integer Linear Programming formulation. The proposed methodology was evaluated by mapping quantum and reversible circuits to an IBM quantum architectures with 5 and 16 qubits. The results were compared with two algorithms that map quantum circuits to IBM architectures. The cost metric used in the evaluation were the number of quantum gates and the number of levels (depth) of the circuits. Experimental results have shown that the proposed methodology outperforms the other approaches regarding the circuits' size. The results of the methodology used to implement quantum (with non-implementable gates) and Toffoli circuits to IBM architectures have shown that the mapping targeting a specific architecture constraints results in a smaller mapped circuit. The methodology developed can be easily adapted to any quantum architecture. Also, the proposed Integer Linear Programming formulation can be used in any reversible circuit and can be applied in other research areas.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-09T16:47:24Z
2019-10-09T16:47:24Z
2019-08-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/190680
000925823
33004099080P0
url http://hdl.handle.net/11449/190680
identifier_str_mv 000925823
33004099080P0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128190413012992