Parkinson's disease identification through Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Spadoto, André A.
Data de Publicação: 2010
Outros Autores: Guido, Rodrigo C., Papa, João Paulo [UNESP], Falcão, Alexandre X.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IEMBS.2010.5627634
http://hdl.handle.net/11449/72041
Resumo: Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.
id UNSP_2008d6f661d244ba07aa46713eca847b
oai_identifier_str oai:repositorio.unesp.br:11449/72041
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Parkinson's disease identification through Optimum-Path ForestArtificial intelligence techniquesArtificial Neural NetworkAutomatic recognitionCommonly usedFeature spaceKernel mappingParkinson's diseasePattern recognition techniquesPD identificationSupervised classificationDiseasesPattern recognitionNeural networksArtificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.Institute of Physics at São Carlos University of São Paulo, São CarlosDepartment of Computing Universidade Estadual Paulista (UNESP), BauruInstitute of Computing, CampinasDepartment of Computing Universidade Estadual Paulista (UNESP), BauruUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Institute of ComputingSpadoto, André A.Guido, Rodrigo C.Papa, João Paulo [UNESP]Falcão, Alexandre X.2014-05-27T11:25:19Z2014-05-27T11:25:19Z2010-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject6087-6090http://dx.doi.org/10.1109/IEMBS.2010.56276342010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.http://hdl.handle.net/11449/7204110.1109/IEMBS.2010.56276342-s2.0-78650818582903918293274719465420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10info:eu-repo/semantics/openAccess2024-04-23T16:11:20Zoai:repositorio.unesp.br:11449/72041Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:31:44.473735Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Parkinson's disease identification through Optimum-Path Forest
title Parkinson's disease identification through Optimum-Path Forest
spellingShingle Parkinson's disease identification through Optimum-Path Forest
Spadoto, André A.
Artificial intelligence techniques
Artificial Neural Network
Automatic recognition
Commonly used
Feature space
Kernel mapping
Parkinson's disease
Pattern recognition techniques
PD identification
Supervised classification
Diseases
Pattern recognition
Neural networks
title_short Parkinson's disease identification through Optimum-Path Forest
title_full Parkinson's disease identification through Optimum-Path Forest
title_fullStr Parkinson's disease identification through Optimum-Path Forest
title_full_unstemmed Parkinson's disease identification through Optimum-Path Forest
title_sort Parkinson's disease identification through Optimum-Path Forest
author Spadoto, André A.
author_facet Spadoto, André A.
Guido, Rodrigo C.
Papa, João Paulo [UNESP]
Falcão, Alexandre X.
author_role author
author2 Guido, Rodrigo C.
Papa, João Paulo [UNESP]
Falcão, Alexandre X.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Institute of Computing
dc.contributor.author.fl_str_mv Spadoto, André A.
Guido, Rodrigo C.
Papa, João Paulo [UNESP]
Falcão, Alexandre X.
dc.subject.por.fl_str_mv Artificial intelligence techniques
Artificial Neural Network
Automatic recognition
Commonly used
Feature space
Kernel mapping
Parkinson's disease
Pattern recognition techniques
PD identification
Supervised classification
Diseases
Pattern recognition
Neural networks
topic Artificial intelligence techniques
Artificial Neural Network
Automatic recognition
Commonly used
Feature space
Kernel mapping
Parkinson's disease
Pattern recognition techniques
PD identification
Supervised classification
Diseases
Pattern recognition
Neural networks
description Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-01
2014-05-27T11:25:19Z
2014-05-27T11:25:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IEMBS.2010.5627634
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.
http://hdl.handle.net/11449/72041
10.1109/IEMBS.2010.5627634
2-s2.0-78650818582
9039182932747194
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1109/IEMBS.2010.5627634
http://hdl.handle.net/11449/72041
identifier_str_mv 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.
10.1109/IEMBS.2010.5627634
2-s2.0-78650818582
9039182932747194
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6087-6090
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128942495760384