Feature Selection Using Geometric Semantic Genetic Programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1145/3067695.3076020 http://hdl.handle.net/11449/210101 |
Resumo: | Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes. |
id |
UNSP_21799228e4ec5a073b9de7f78ba74d17 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210101 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Feature Selection Using Geometric Semantic Genetic ProgrammingFeature selectionGeometric Semantic Genetic ProgrammingFeature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo Southwestern Coll, BR-18707150 Avare, SP, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/162509FAPESP: 2014/12236-1FAPESP: 2015/25739-4CNPq: 306166/2014-3Assoc Computing MachineryUniversidade Estadual Paulista (Unesp)Sao Paulo Southwestern CollRosa, G. H. [UNESP]Papa, J. P. [UNESP]Papa, L. P.Ochoa, G.2021-06-25T12:39:46Z2021-06-25T12:39:46Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject253-254http://dx.doi.org/10.1145/3067695.3076020Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.http://hdl.handle.net/11449/21010110.1145/3067695.3076020WOS:000625865500127Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/210101Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:08:52.084327Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Feature Selection Using Geometric Semantic Genetic Programming |
title |
Feature Selection Using Geometric Semantic Genetic Programming |
spellingShingle |
Feature Selection Using Geometric Semantic Genetic Programming Rosa, G. H. [UNESP] Feature selection Geometric Semantic Genetic Programming |
title_short |
Feature Selection Using Geometric Semantic Genetic Programming |
title_full |
Feature Selection Using Geometric Semantic Genetic Programming |
title_fullStr |
Feature Selection Using Geometric Semantic Genetic Programming |
title_full_unstemmed |
Feature Selection Using Geometric Semantic Genetic Programming |
title_sort |
Feature Selection Using Geometric Semantic Genetic Programming |
author |
Rosa, G. H. [UNESP] |
author_facet |
Rosa, G. H. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Ochoa, G. |
author_role |
author |
author2 |
Papa, J. P. [UNESP] Papa, L. P. Ochoa, G. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Sao Paulo Southwestern Coll |
dc.contributor.author.fl_str_mv |
Rosa, G. H. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Ochoa, G. |
dc.subject.por.fl_str_mv |
Feature selection Geometric Semantic Genetic Programming |
topic |
Feature selection Geometric Semantic Genetic Programming |
description |
Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2021-06-25T12:39:46Z 2021-06-25T12:39:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1145/3067695.3076020 Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017. http://hdl.handle.net/11449/210101 10.1145/3067695.3076020 WOS:000625865500127 |
url |
http://dx.doi.org/10.1145/3067695.3076020 http://hdl.handle.net/11449/210101 |
identifier_str_mv |
Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017. 10.1145/3067695.3076020 WOS:000625865500127 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
253-254 |
dc.publisher.none.fl_str_mv |
Assoc Computing Machinery |
publisher.none.fl_str_mv |
Assoc Computing Machinery |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128610833268736 |