Feature Selection Using Geometric Semantic Genetic Programming

Detalhes bibliográficos
Autor(a) principal: Rosa, G. H. [UNESP]
Data de Publicação: 2017
Outros Autores: Papa, J. P. [UNESP], Papa, L. P., Ochoa, G.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1145/3067695.3076020
http://hdl.handle.net/11449/210101
Resumo: Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.
id UNSP_21799228e4ec5a073b9de7f78ba74d17
oai_identifier_str oai:repositorio.unesp.br:11449/210101
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Feature Selection Using Geometric Semantic Genetic ProgrammingFeature selectionGeometric Semantic Genetic ProgrammingFeature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo Southwestern Coll, BR-18707150 Avare, SP, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/162509FAPESP: 2014/12236-1FAPESP: 2015/25739-4CNPq: 306166/2014-3Assoc Computing MachineryUniversidade Estadual Paulista (Unesp)Sao Paulo Southwestern CollRosa, G. H. [UNESP]Papa, J. P. [UNESP]Papa, L. P.Ochoa, G.2021-06-25T12:39:46Z2021-06-25T12:39:46Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject253-254http://dx.doi.org/10.1145/3067695.3076020Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.http://hdl.handle.net/11449/21010110.1145/3067695.3076020WOS:000625865500127Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/210101Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:08:52.084327Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Feature Selection Using Geometric Semantic Genetic Programming
title Feature Selection Using Geometric Semantic Genetic Programming
spellingShingle Feature Selection Using Geometric Semantic Genetic Programming
Rosa, G. H. [UNESP]
Feature selection
Geometric Semantic Genetic Programming
title_short Feature Selection Using Geometric Semantic Genetic Programming
title_full Feature Selection Using Geometric Semantic Genetic Programming
title_fullStr Feature Selection Using Geometric Semantic Genetic Programming
title_full_unstemmed Feature Selection Using Geometric Semantic Genetic Programming
title_sort Feature Selection Using Geometric Semantic Genetic Programming
author Rosa, G. H. [UNESP]
author_facet Rosa, G. H. [UNESP]
Papa, J. P. [UNESP]
Papa, L. P.
Ochoa, G.
author_role author
author2 Papa, J. P. [UNESP]
Papa, L. P.
Ochoa, G.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Sao Paulo Southwestern Coll
dc.contributor.author.fl_str_mv Rosa, G. H. [UNESP]
Papa, J. P. [UNESP]
Papa, L. P.
Ochoa, G.
dc.subject.por.fl_str_mv Feature selection
Geometric Semantic Genetic Programming
topic Feature selection
Geometric Semantic Genetic Programming
description Feature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2021-06-25T12:39:46Z
2021-06-25T12:39:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1145/3067695.3076020
Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.
http://hdl.handle.net/11449/210101
10.1145/3067695.3076020
WOS:000625865500127
url http://dx.doi.org/10.1145/3067695.3076020
http://hdl.handle.net/11449/210101
identifier_str_mv Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion). New York: Assoc Computing Machinery, p. 253-254, 2017.
10.1145/3067695.3076020
WOS:000625865500127
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings Of The 2017 Genetic And Evolutionary Computation Conference Companion (gecco'17 Companion)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 253-254
dc.publisher.none.fl_str_mv Assoc Computing Machinery
publisher.none.fl_str_mv Assoc Computing Machinery
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128610833268736