An Ensemble-based Approach for Breast Mass Classification in Mammography Images

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Patricia B. [UNESP]
Data de Publicação: 2017
Outros Autores: Papa, Joao P. [UNESP], Romero, Roseli A. F., Armato, S. G., Petrick, N. A.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1117/12.2250083
http://hdl.handle.net/11449/163059
Resumo: Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.
id UNSP_232d94e4fc24dde3303b985ae14f6a04
oai_identifier_str oai:repositorio.unesp.br:11449/163059
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An Ensemble-based Approach for Breast Mass Classification in Mammography ImagesMammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Sao Paulo, Dept Comp Sci, Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilFAPESP: 2014/16250-9CNPq: 306166/2014-3Spie-int Soc Optical EngineeringUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Ribeiro, Patricia B. [UNESP]Papa, Joao P. [UNESP]Romero, Roseli A. F.Armato, S. G.Petrick, N. A.2018-11-26T17:39:56Z2018-11-26T17:39:56Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8application/pdfhttp://dx.doi.org/10.1117/12.2250083Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.0277-786Xhttp://hdl.handle.net/11449/16305910.1117/12.2250083WOS:000406425300092WOS000406425300092.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMedical Imaging 2017: Computer-aided Diagnosisinfo:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/163059Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:22:33.265430Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An Ensemble-based Approach for Breast Mass Classification in Mammography Images
title An Ensemble-based Approach for Breast Mass Classification in Mammography Images
spellingShingle An Ensemble-based Approach for Breast Mass Classification in Mammography Images
Ribeiro, Patricia B. [UNESP]
title_short An Ensemble-based Approach for Breast Mass Classification in Mammography Images
title_full An Ensemble-based Approach for Breast Mass Classification in Mammography Images
title_fullStr An Ensemble-based Approach for Breast Mass Classification in Mammography Images
title_full_unstemmed An Ensemble-based Approach for Breast Mass Classification in Mammography Images
title_sort An Ensemble-based Approach for Breast Mass Classification in Mammography Images
author Ribeiro, Patricia B. [UNESP]
author_facet Ribeiro, Patricia B. [UNESP]
Papa, Joao P. [UNESP]
Romero, Roseli A. F.
Armato, S. G.
Petrick, N. A.
author_role author
author2 Papa, Joao P. [UNESP]
Romero, Roseli A. F.
Armato, S. G.
Petrick, N. A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Ribeiro, Patricia B. [UNESP]
Papa, Joao P. [UNESP]
Romero, Roseli A. F.
Armato, S. G.
Petrick, N. A.
description Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:39:56Z
2018-11-26T17:39:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1117/12.2250083
Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.
0277-786X
http://hdl.handle.net/11449/163059
10.1117/12.2250083
WOS:000406425300092
WOS000406425300092.pdf
url http://dx.doi.org/10.1117/12.2250083
http://hdl.handle.net/11449/163059
identifier_str_mv Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.
0277-786X
10.1117/12.2250083
WOS:000406425300092
WOS000406425300092.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Medical Imaging 2017: Computer-aided Diagnosis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
application/pdf
dc.publisher.none.fl_str_mv Spie-int Soc Optical Engineering
publisher.none.fl_str_mv Spie-int Soc Optical Engineering
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129060217290752