An Ensemble-based Approach for Breast Mass Classification in Mammography Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1117/12.2250083 http://hdl.handle.net/11449/163059 |
Resumo: | Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%. |
id |
UNSP_232d94e4fc24dde3303b985ae14f6a04 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163059 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An Ensemble-based Approach for Breast Mass Classification in Mammography ImagesMammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Sao Paulo, Dept Comp Sci, Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilFAPESP: 2014/16250-9CNPq: 306166/2014-3Spie-int Soc Optical EngineeringUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Ribeiro, Patricia B. [UNESP]Papa, Joao P. [UNESP]Romero, Roseli A. F.Armato, S. G.Petrick, N. A.2018-11-26T17:39:56Z2018-11-26T17:39:56Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8application/pdfhttp://dx.doi.org/10.1117/12.2250083Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.0277-786Xhttp://hdl.handle.net/11449/16305910.1117/12.2250083WOS:000406425300092WOS000406425300092.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMedical Imaging 2017: Computer-aided Diagnosisinfo:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/163059Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:22:33.265430Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
title |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
spellingShingle |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images Ribeiro, Patricia B. [UNESP] |
title_short |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
title_full |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
title_fullStr |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
title_full_unstemmed |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
title_sort |
An Ensemble-based Approach for Breast Mass Classification in Mammography Images |
author |
Ribeiro, Patricia B. [UNESP] |
author_facet |
Ribeiro, Patricia B. [UNESP] Papa, Joao P. [UNESP] Romero, Roseli A. F. Armato, S. G. Petrick, N. A. |
author_role |
author |
author2 |
Papa, Joao P. [UNESP] Romero, Roseli A. F. Armato, S. G. Petrick, N. A. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Ribeiro, Patricia B. [UNESP] Papa, Joao P. [UNESP] Romero, Roseli A. F. Armato, S. G. Petrick, N. A. |
description |
Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:39:56Z 2018-11-26T17:39:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1117/12.2250083 Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017. 0277-786X http://hdl.handle.net/11449/163059 10.1117/12.2250083 WOS:000406425300092 WOS000406425300092.pdf |
url |
http://dx.doi.org/10.1117/12.2250083 http://hdl.handle.net/11449/163059 |
identifier_str_mv |
Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017. 0277-786X 10.1117/12.2250083 WOS:000406425300092 WOS000406425300092.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Medical Imaging 2017: Computer-aided Diagnosis |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 application/pdf |
dc.publisher.none.fl_str_mv |
Spie-int Soc Optical Engineering |
publisher.none.fl_str_mv |
Spie-int Soc Optical Engineering |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129060217290752 |