Mass appraisal of apartment through geographically weighted regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/s1982-21702020000200005 http://hdl.handle.net/11449/200985 |
Resumo: | Housing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection. |
id |
UNSP_23cee6661973623ada6d85bdaf4d1a4e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200985 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Mass appraisal of apartment through geographically weighted regressionGeostatisticsKernel interpolatorMass appraisalPlan of generic valueSurface of valueHousing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de CartográficaUniversidade Federal Rural do Rio de Janeiro-UFRRJ Instituto de Tecnologia Departamento de EngenhariaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de EstatísticaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de CartográficaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de EstatísticaCAPES: 88882.433940/2019-01Universidade Estadual Paulista (Unesp)Instituto de TecnologiaFontoura Júnior, Caio Flávio Martinez [UNESP]Uberti, Marlene SaletiTachibana, Vilma Mayumi [UNESP]2020-12-12T02:21:13Z2020-12-12T02:21:13Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-16application/pdfhttp://dx.doi.org/10.1590/s1982-21702020000200005Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020.1982-21701413-4853http://hdl.handle.net/11449/20098510.1590/s1982-21702020000200005S1982-217020200002002002-s2.0-85090171521S1982-21702020000200200.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBoletim de Ciencias Geodesicasinfo:eu-repo/semantics/openAccess2024-06-18T18:18:05Zoai:repositorio.unesp.br:11449/200985Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:33:50.917675Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Mass appraisal of apartment through geographically weighted regression |
title |
Mass appraisal of apartment through geographically weighted regression |
spellingShingle |
Mass appraisal of apartment through geographically weighted regression Fontoura Júnior, Caio Flávio Martinez [UNESP] Geostatistics Kernel interpolator Mass appraisal Plan of generic value Surface of value |
title_short |
Mass appraisal of apartment through geographically weighted regression |
title_full |
Mass appraisal of apartment through geographically weighted regression |
title_fullStr |
Mass appraisal of apartment through geographically weighted regression |
title_full_unstemmed |
Mass appraisal of apartment through geographically weighted regression |
title_sort |
Mass appraisal of apartment through geographically weighted regression |
author |
Fontoura Júnior, Caio Flávio Martinez [UNESP] |
author_facet |
Fontoura Júnior, Caio Flávio Martinez [UNESP] Uberti, Marlene Saleti Tachibana, Vilma Mayumi [UNESP] |
author_role |
author |
author2 |
Uberti, Marlene Saleti Tachibana, Vilma Mayumi [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Instituto de Tecnologia |
dc.contributor.author.fl_str_mv |
Fontoura Júnior, Caio Flávio Martinez [UNESP] Uberti, Marlene Saleti Tachibana, Vilma Mayumi [UNESP] |
dc.subject.por.fl_str_mv |
Geostatistics Kernel interpolator Mass appraisal Plan of generic value Surface of value |
topic |
Geostatistics Kernel interpolator Mass appraisal Plan of generic value Surface of value |
description |
Housing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:21:13Z 2020-12-12T02:21:13Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/s1982-21702020000200005 Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020. 1982-2170 1413-4853 http://hdl.handle.net/11449/200985 10.1590/s1982-21702020000200005 S1982-21702020000200200 2-s2.0-85090171521 S1982-21702020000200200.pdf |
url |
http://dx.doi.org/10.1590/s1982-21702020000200005 http://hdl.handle.net/11449/200985 |
identifier_str_mv |
Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020. 1982-2170 1413-4853 10.1590/s1982-21702020000200005 S1982-21702020000200200 2-s2.0-85090171521 S1982-21702020000200200.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Boletim de Ciencias Geodesicas |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-16 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128827075854336 |