Mass appraisal of apartment through geographically weighted regression

Detalhes bibliográficos
Autor(a) principal: Fontoura Júnior, Caio Flávio Martinez [UNESP]
Data de Publicação: 2020
Outros Autores: Uberti, Marlene Saleti, Tachibana, Vilma Mayumi [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/s1982-21702020000200005
http://hdl.handle.net/11449/200985
Resumo: Housing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection.
id UNSP_23cee6661973623ada6d85bdaf4d1a4e
oai_identifier_str oai:repositorio.unesp.br:11449/200985
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Mass appraisal of apartment through geographically weighted regressionGeostatisticsKernel interpolatorMass appraisalPlan of generic valueSurface of valueHousing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de CartográficaUniversidade Federal Rural do Rio de Janeiro-UFRRJ Instituto de Tecnologia Departamento de EngenhariaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de EstatísticaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de CartográficaUniversidade Estadual Paulista-UNESP Faculdade de Ciência e Tecnologia Departamento de EstatísticaCAPES: 88882.433940/2019-01Universidade Estadual Paulista (Unesp)Instituto de TecnologiaFontoura Júnior, Caio Flávio Martinez [UNESP]Uberti, Marlene SaletiTachibana, Vilma Mayumi [UNESP]2020-12-12T02:21:13Z2020-12-12T02:21:13Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-16application/pdfhttp://dx.doi.org/10.1590/s1982-21702020000200005Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020.1982-21701413-4853http://hdl.handle.net/11449/20098510.1590/s1982-21702020000200005S1982-217020200002002002-s2.0-85090171521S1982-21702020000200200.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBoletim de Ciencias Geodesicasinfo:eu-repo/semantics/openAccess2024-06-18T18:18:05Zoai:repositorio.unesp.br:11449/200985Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:33:50.917675Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Mass appraisal of apartment through geographically weighted regression
title Mass appraisal of apartment through geographically weighted regression
spellingShingle Mass appraisal of apartment through geographically weighted regression
Fontoura Júnior, Caio Flávio Martinez [UNESP]
Geostatistics
Kernel interpolator
Mass appraisal
Plan of generic value
Surface of value
title_short Mass appraisal of apartment through geographically weighted regression
title_full Mass appraisal of apartment through geographically weighted regression
title_fullStr Mass appraisal of apartment through geographically weighted regression
title_full_unstemmed Mass appraisal of apartment through geographically weighted regression
title_sort Mass appraisal of apartment through geographically weighted regression
author Fontoura Júnior, Caio Flávio Martinez [UNESP]
author_facet Fontoura Júnior, Caio Flávio Martinez [UNESP]
Uberti, Marlene Saleti
Tachibana, Vilma Mayumi [UNESP]
author_role author
author2 Uberti, Marlene Saleti
Tachibana, Vilma Mayumi [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Instituto de Tecnologia
dc.contributor.author.fl_str_mv Fontoura Júnior, Caio Flávio Martinez [UNESP]
Uberti, Marlene Saleti
Tachibana, Vilma Mayumi [UNESP]
dc.subject.por.fl_str_mv Geostatistics
Kernel interpolator
Mass appraisal
Plan of generic value
Surface of value
topic Geostatistics
Kernel interpolator
Mass appraisal
Plan of generic value
Surface of value
description Housing Market appraisal studies generally apply classic regression models, whose parameters are globally estimated. However, the use of the Geographically Weighted Regression (GWR) model, allows the parameters to be locally estimated, increasing its precision. The aim of this article is to apply the GWR model to a sample of 82 apartments, in order to create a plan of values of some districts of the West Zone of Rio de Janeiro city, Brazil. With the proposed methodology, GWR and kernel estimator, it is possible to generate a surface of values. The performance of the surface of values was assessed with (i) cross-validation between the kernel functions, with the Root-Mean Square Standardized (RMSS) error; and with (ii) the GWR adjustment factors to determine the ideal bandwidth. The contribution of generating a surface of values with geographical location via kernel estimator lies on supporting apartment pricing, such as in calculating the venal value of apartments of the West Zone of Rio de Janeiro city, besides being applied in IPTU-Imposto sobre Propriedade Predial e Territorial (The Urban Real Estate Property Tax) and ITBI-Imposto de Transmissão de Bens Imóveis (Tax on the Transfer of Real Estate) and ITBI collection.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:21:13Z
2020-12-12T02:21:13Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/s1982-21702020000200005
Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020.
1982-2170
1413-4853
http://hdl.handle.net/11449/200985
10.1590/s1982-21702020000200005
S1982-21702020000200200
2-s2.0-85090171521
S1982-21702020000200200.pdf
url http://dx.doi.org/10.1590/s1982-21702020000200005
http://hdl.handle.net/11449/200985
identifier_str_mv Boletim de Ciencias Geodesicas, v. 26, n. 2, p. 1-16, 2020.
1982-2170
1413-4853
10.1590/s1982-21702020000200005
S1982-21702020000200200
2-s2.0-85090171521
S1982-21702020000200200.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Boletim de Ciencias Geodesicas
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-16
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128827075854336