A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-30493-5_46 http://hdl.handle.net/11449/201210 |
Resumo: | During the image acquisition process, some level of noise is usually added to the data mainly due to physical limitations of the sensor, and also regarding imprecisions during the data transmission and manipulation. Therefore, the resultant image needs to be further processed for noise attenuation without losing details. In this work, we attempt to denoise images using the advantage of sparse-based encoding and deep networks. Experiments on public images corrupted by different levels of Gaussian noise support the effectiveness of the proposed approach concerning some state-of-the-art image denoising approaches. |
id |
UNSP_2540499617519af4a05723878e13e5be |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201210 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Sparse Filtering-Based Approach for Non-blind Deep Image DenoisingDuring the image acquisition process, some level of noise is usually added to the data mainly due to physical limitations of the sensor, and also regarding imprecisions during the data transmission and manipulation. Therefore, the resultant image needs to be further processed for noise attenuation without losing details. In this work, we attempt to denoise images using the advantage of sparse-based encoding and deep networks. Experiments on public images corrupted by different levels of Gaussian noise support the effectiveness of the proposed approach concerning some state-of-the-art image denoising approaches.UFSCar - Federal University of São CarlosUNESP - São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01UNESP - São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Pires, Rafael G.Santos, Daniel S. [UNESP]Souza, Gustavo B.Levada, Alexandre L. M.Papa, João Paulo [UNESP]2020-12-12T02:26:53Z2020-12-12T02:26:53Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject471-482http://dx.doi.org/10.1007/978-3-030-30493-5_46Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11731 LNCS, p. 471-482.1611-33490302-9743http://hdl.handle.net/11449/20121010.1007/978-3-030-30493-5_462-s2.0-85072959140Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/201210Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:36:38.547814Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
title |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
spellingShingle |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising Pires, Rafael G. |
title_short |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
title_full |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
title_fullStr |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
title_full_unstemmed |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
title_sort |
A Sparse Filtering-Based Approach for Non-blind Deep Image Denoising |
author |
Pires, Rafael G. |
author_facet |
Pires, Rafael G. Santos, Daniel S. [UNESP] Souza, Gustavo B. Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Santos, Daniel S. [UNESP] Souza, Gustavo B. Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pires, Rafael G. Santos, Daniel S. [UNESP] Souza, Gustavo B. Levada, Alexandre L. M. Papa, João Paulo [UNESP] |
description |
During the image acquisition process, some level of noise is usually added to the data mainly due to physical limitations of the sensor, and also regarding imprecisions during the data transmission and manipulation. Therefore, the resultant image needs to be further processed for noise attenuation without losing details. In this work, we attempt to denoise images using the advantage of sparse-based encoding and deep networks. Experiments on public images corrupted by different levels of Gaussian noise support the effectiveness of the proposed approach concerning some state-of-the-art image denoising approaches. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2020-12-12T02:26:53Z 2020-12-12T02:26:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-30493-5_46 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11731 LNCS, p. 471-482. 1611-3349 0302-9743 http://hdl.handle.net/11449/201210 10.1007/978-3-030-30493-5_46 2-s2.0-85072959140 |
url |
http://dx.doi.org/10.1007/978-3-030-30493-5_46 http://hdl.handle.net/11449/201210 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11731 LNCS, p. 471-482. 1611-3349 0302-9743 10.1007/978-3-030-30493-5_46 2-s2.0-85072959140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
471-482 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129096308228096 |