Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine

Detalhes bibliográficos
Autor(a) principal: Llibre, Jaume
Data de Publicação: 2018
Outros Autores: Messias, Marcelo [UNESP], Reinol, Alisson C. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s12215-018-0338-x
http://hdl.handle.net/11449/188314
Resumo: In this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them.
id UNSP_2565f2c6389a6578aa04e150ae6322eb
oai_identifier_str oai:repositorio.unesp.br:11449/188314
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Quadratic three-dimensional differential systems having invariant planes with total multiplicity nineExtactic polynomialFirst integralsInvariant planesPolynomial differential systemsIn this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Agència de Gestió d’Ajuts Universitaris i de RecercaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Ministerio de Economía y CompetitividadDepartament de Matemàtiques Universitat Autònoma de BarcelonaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Universidade Estadual PaulistaDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas UNESP – Universidade Estadual PaulistaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Universidade Estadual PaulistaDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas UNESP – Universidade Estadual PaulistaFAPESP: 2013/24541-0FAPESP: 2013/26602-7Agència de Gestió d’Ajuts Universitaris i de Recerca: 2014 SGR568FAPESP: 2016/01258-0CNPq: 308159/2015-2Ministerio de Economía y Competitividad: MTM2013-40998-PMinisterio de Economía y Competitividad: MTM2016-77278-P (FEDER)Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (Unesp)Llibre, JaumeMessias, Marcelo [UNESP]Reinol, Alisson C. [UNESP]2019-10-06T16:04:09Z2019-10-06T16:04:09Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article569-580http://dx.doi.org/10.1007/s12215-018-0338-xRendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018.1973-44090009-725Xhttp://hdl.handle.net/11449/18831410.1007/s12215-018-0338-x2-s2.0-850561130283757225669056317Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRendiconti del Circolo Matematico di Palermoinfo:eu-repo/semantics/openAccess2024-06-19T14:31:52Zoai:repositorio.unesp.br:11449/188314Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:49:36.190766Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
title Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
spellingShingle Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
Llibre, Jaume
Extactic polynomial
First integrals
Invariant planes
Polynomial differential systems
title_short Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
title_full Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
title_fullStr Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
title_full_unstemmed Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
title_sort Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
author Llibre, Jaume
author_facet Llibre, Jaume
Messias, Marcelo [UNESP]
Reinol, Alisson C. [UNESP]
author_role author
author2 Messias, Marcelo [UNESP]
Reinol, Alisson C. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universitat Autònoma de Barcelona
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Llibre, Jaume
Messias, Marcelo [UNESP]
Reinol, Alisson C. [UNESP]
dc.subject.por.fl_str_mv Extactic polynomial
First integrals
Invariant planes
Polynomial differential systems
topic Extactic polynomial
First integrals
Invariant planes
Polynomial differential systems
description In this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
2019-10-06T16:04:09Z
2019-10-06T16:04:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s12215-018-0338-x
Rendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018.
1973-4409
0009-725X
http://hdl.handle.net/11449/188314
10.1007/s12215-018-0338-x
2-s2.0-85056113028
3757225669056317
url http://dx.doi.org/10.1007/s12215-018-0338-x
http://hdl.handle.net/11449/188314
identifier_str_mv Rendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018.
1973-4409
0009-725X
10.1007/s12215-018-0338-x
2-s2.0-85056113028
3757225669056317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rendiconti del Circolo Matematico di Palermo
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 569-580
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128568601870336