Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s12215-018-0338-x http://hdl.handle.net/11449/188314 |
Resumo: | In this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them. |
id |
UNSP_2565f2c6389a6578aa04e150ae6322eb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188314 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nineExtactic polynomialFirst integralsInvariant planesPolynomial differential systemsIn this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Agència de Gestió d’Ajuts Universitaris i de RecercaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Ministerio de Economía y CompetitividadDepartament de Matemàtiques Universitat Autònoma de BarcelonaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Universidade Estadual PaulistaDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas UNESP – Universidade Estadual PaulistaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Universidade Estadual PaulistaDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas UNESP – Universidade Estadual PaulistaFAPESP: 2013/24541-0FAPESP: 2013/26602-7Agència de Gestió d’Ajuts Universitaris i de Recerca: 2014 SGR568FAPESP: 2016/01258-0CNPq: 308159/2015-2Ministerio de Economía y Competitividad: MTM2013-40998-PMinisterio de Economía y Competitividad: MTM2016-77278-P (FEDER)Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (Unesp)Llibre, JaumeMessias, Marcelo [UNESP]Reinol, Alisson C. [UNESP]2019-10-06T16:04:09Z2019-10-06T16:04:09Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article569-580http://dx.doi.org/10.1007/s12215-018-0338-xRendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018.1973-44090009-725Xhttp://hdl.handle.net/11449/18831410.1007/s12215-018-0338-x2-s2.0-850561130283757225669056317Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRendiconti del Circolo Matematico di Palermoinfo:eu-repo/semantics/openAccess2024-06-19T14:31:52Zoai:repositorio.unesp.br:11449/188314Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:49:36.190766Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
title |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
spellingShingle |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine Llibre, Jaume Extactic polynomial First integrals Invariant planes Polynomial differential systems |
title_short |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
title_full |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
title_fullStr |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
title_full_unstemmed |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
title_sort |
Quadratic three-dimensional differential systems having invariant planes with total multiplicity nine |
author |
Llibre, Jaume |
author_facet |
Llibre, Jaume Messias, Marcelo [UNESP] Reinol, Alisson C. [UNESP] |
author_role |
author |
author2 |
Messias, Marcelo [UNESP] Reinol, Alisson C. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universitat Autònoma de Barcelona Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Llibre, Jaume Messias, Marcelo [UNESP] Reinol, Alisson C. [UNESP] |
dc.subject.por.fl_str_mv |
Extactic polynomial First integrals Invariant planes Polynomial differential systems |
topic |
Extactic polynomial First integrals Invariant planes Polynomial differential systems |
description |
In this paper we consider all the quadratic polynomial differential systems in R3 having exactly nine invariant planes taking into account their multiplicities. This is the maximum number of invariant planes that these kind of systems can have, without taking into account the infinite plane. We prove that there exist thirty possible configurations for these invariant planes, and we study the realization and the existence of first integrals for each one of these configurations. We show that at least twenty three of these configurations are realizable and provide explicit examples for each one of them. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 2019-10-06T16:04:09Z 2019-10-06T16:04:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12215-018-0338-x Rendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018. 1973-4409 0009-725X http://hdl.handle.net/11449/188314 10.1007/s12215-018-0338-x 2-s2.0-85056113028 3757225669056317 |
url |
http://dx.doi.org/10.1007/s12215-018-0338-x http://hdl.handle.net/11449/188314 |
identifier_str_mv |
Rendiconti del Circolo Matematico di Palermo, v. 67, n. 3, p. 569-580, 2018. 1973-4409 0009-725X 10.1007/s12215-018-0338-x 2-s2.0-85056113028 3757225669056317 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rendiconti del Circolo Matematico di Palermo |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
569-580 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128568601870336 |