Color fractal descriptors for adaxial epidermis texture classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-25751-8_7 http://hdl.handle.net/11449/178233 |
Resumo: | The leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision. |
id |
UNSP_264e28bc982eaac589e30822964a46d1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178233 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Color fractal descriptors for adaxial epidermis texture classificationAdaxial epidermis tissueBouligand-Minkowski methodColorFractal dimensionTexture analysisThe leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Faculdade de Computação Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121Departamento de Engenharia de Computação Campus de Sobral - Universidade Federal Do Ceará, Rua Estanislau Frota, S/N, CentroDepartamento de Ciências Biológicas Faculdade de Ciências E Letras Universidade Estadual Paulista UNESP, Av. Dom Antônio, 2100Departamento de Ciências Biológicas Faculdade de Ciências E Letras Universidade Estadual Paulista UNESP, Av. Dom Antônio, 2100CNPq: #301558/2012-4Universidade Federal de Uberlândia (UFU)Departamento de Engenharia de ComputaçãoUniversidade Estadual Paulista (Unesp)Backes, André R.de Mesquita Sá Junior, Jarbas JoaciKolb, Rosana Marta [UNESP]2018-12-11T17:29:25Z2018-12-11T17:29:25Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject51-58http://dx.doi.org/10.1007/978-3-319-25751-8_7Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58.1611-33490302-9743http://hdl.handle.net/11449/17823310.1007/978-3-319-25751-8_72-s2.0-84983656147Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-13T17:39:13Zoai:repositorio.unesp.br:11449/178233Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:04:49.312204Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Color fractal descriptors for adaxial epidermis texture classification |
title |
Color fractal descriptors for adaxial epidermis texture classification |
spellingShingle |
Color fractal descriptors for adaxial epidermis texture classification Backes, André R. Adaxial epidermis tissue Bouligand-Minkowski method Color Fractal dimension Texture analysis |
title_short |
Color fractal descriptors for adaxial epidermis texture classification |
title_full |
Color fractal descriptors for adaxial epidermis texture classification |
title_fullStr |
Color fractal descriptors for adaxial epidermis texture classification |
title_full_unstemmed |
Color fractal descriptors for adaxial epidermis texture classification |
title_sort |
Color fractal descriptors for adaxial epidermis texture classification |
author |
Backes, André R. |
author_facet |
Backes, André R. de Mesquita Sá Junior, Jarbas Joaci Kolb, Rosana Marta [UNESP] |
author_role |
author |
author2 |
de Mesquita Sá Junior, Jarbas Joaci Kolb, Rosana Marta [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Uberlândia (UFU) Departamento de Engenharia de Computação Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Backes, André R. de Mesquita Sá Junior, Jarbas Joaci Kolb, Rosana Marta [UNESP] |
dc.subject.por.fl_str_mv |
Adaxial epidermis tissue Bouligand-Minkowski method Color Fractal dimension Texture analysis |
topic |
Adaxial epidermis tissue Bouligand-Minkowski method Color Fractal dimension Texture analysis |
description |
The leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-12-11T17:29:25Z 2018-12-11T17:29:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-25751-8_7 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58. 1611-3349 0302-9743 http://hdl.handle.net/11449/178233 10.1007/978-3-319-25751-8_7 2-s2.0-84983656147 |
url |
http://dx.doi.org/10.1007/978-3-319-25751-8_7 http://hdl.handle.net/11449/178233 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58. 1611-3349 0302-9743 10.1007/978-3-319-25751-8_7 2-s2.0-84983656147 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
51-58 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129580502876160 |