Color fractal descriptors for adaxial epidermis texture classification

Detalhes bibliográficos
Autor(a) principal: Backes, André R.
Data de Publicação: 2015
Outros Autores: de Mesquita Sá Junior, Jarbas Joaci, Kolb, Rosana Marta [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-25751-8_7
http://hdl.handle.net/11449/178233
Resumo: The leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision.
id UNSP_264e28bc982eaac589e30822964a46d1
oai_identifier_str oai:repositorio.unesp.br:11449/178233
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Color fractal descriptors for adaxial epidermis texture classificationAdaxial epidermis tissueBouligand-Minkowski methodColorFractal dimensionTexture analysisThe leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Faculdade de Computação Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121Departamento de Engenharia de Computação Campus de Sobral - Universidade Federal Do Ceará, Rua Estanislau Frota, S/N, CentroDepartamento de Ciências Biológicas Faculdade de Ciências E Letras Universidade Estadual Paulista UNESP, Av. Dom Antônio, 2100Departamento de Ciências Biológicas Faculdade de Ciências E Letras Universidade Estadual Paulista UNESP, Av. Dom Antônio, 2100CNPq: #301558/2012-4Universidade Federal de Uberlândia (UFU)Departamento de Engenharia de ComputaçãoUniversidade Estadual Paulista (Unesp)Backes, André R.de Mesquita Sá Junior, Jarbas JoaciKolb, Rosana Marta [UNESP]2018-12-11T17:29:25Z2018-12-11T17:29:25Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject51-58http://dx.doi.org/10.1007/978-3-319-25751-8_7Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58.1611-33490302-9743http://hdl.handle.net/11449/17823310.1007/978-3-319-25751-8_72-s2.0-84983656147Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-13T17:39:13Zoai:repositorio.unesp.br:11449/178233Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:04:49.312204Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Color fractal descriptors for adaxial epidermis texture classification
title Color fractal descriptors for adaxial epidermis texture classification
spellingShingle Color fractal descriptors for adaxial epidermis texture classification
Backes, André R.
Adaxial epidermis tissue
Bouligand-Minkowski method
Color
Fractal dimension
Texture analysis
title_short Color fractal descriptors for adaxial epidermis texture classification
title_full Color fractal descriptors for adaxial epidermis texture classification
title_fullStr Color fractal descriptors for adaxial epidermis texture classification
title_full_unstemmed Color fractal descriptors for adaxial epidermis texture classification
title_sort Color fractal descriptors for adaxial epidermis texture classification
author Backes, André R.
author_facet Backes, André R.
de Mesquita Sá Junior, Jarbas Joaci
Kolb, Rosana Marta [UNESP]
author_role author
author2 de Mesquita Sá Junior, Jarbas Joaci
Kolb, Rosana Marta [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de Uberlândia (UFU)
Departamento de Engenharia de Computação
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Backes, André R.
de Mesquita Sá Junior, Jarbas Joaci
Kolb, Rosana Marta [UNESP]
dc.subject.por.fl_str_mv Adaxial epidermis tissue
Bouligand-Minkowski method
Color
Fractal dimension
Texture analysis
topic Adaxial epidermis tissue
Bouligand-Minkowski method
Color
Fractal dimension
Texture analysis
description The leaves are an important plant organ and source of information for the traditional plant taxonomy. This study proposes a plant classification approach using the adaxial epidermis tissue, a specific cell layer that covers the leaf. To accomplish this task, we apply a high discriminative color texture analysis method based on the Bouligand- Minkowski fractal dimension. In an experimental comparison, the success rate obtained by our proposed approach (96.66%) was the highest among all the methods used, demonstrating that the Bouligand- Minkowski method is very suitable to extract discriminant features from the adaxial epidermis. Thus, this research can significantly contribute with other studies on plant classification by using computer vision.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-12-11T17:29:25Z
2018-12-11T17:29:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-25751-8_7
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58.
1611-3349
0302-9743
http://hdl.handle.net/11449/178233
10.1007/978-3-319-25751-8_7
2-s2.0-84983656147
url http://dx.doi.org/10.1007/978-3-319-25751-8_7
http://hdl.handle.net/11449/178233
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 51-58.
1611-3349
0302-9743
10.1007/978-3-319-25751-8_7
2-s2.0-84983656147
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 51-58
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129580502876160