3-Dimensional hopf bifurcation via averaging theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract http://dx.doi.org/10.3934/dcds.2007.17.529 http://hdl.handle.net/11449/69533 |
Resumo: | We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems. |
id |
UNSP_26d8d2a6f4b7c95a438b2a6534e7be2a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/69533 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
3-Dimensional hopf bifurcation via averaging theoryAveraging theoryHopf bifurcationLorenz systemWe consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, BarcelonaDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. PauloDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. PauloUniversitat Autònoma de BarcelonaUniversidade Estadual Paulista (Unesp)Llibre, JaumeBuzzi, Claudio A. [UNESP]Da Silva, Paulo R. [UNESP]2014-05-27T11:22:24Z2014-05-27T11:22:24Z2007-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article529-540application/pdfhttp://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstracthttp://dx.doi.org/10.3934/dcds.2007.17.529Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.1078-0947http://hdl.handle.net/11449/6953310.3934/dcds.2007.17.529WOS:0002426967000052-s2.0-342472286492-s2.0-34247228649.pdf66828677607174450000-0003-2037-8417Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDiscrete and Continuous Dynamical Systems0.9761,592info:eu-repo/semantics/openAccess2023-11-06T06:08:06Zoai:repositorio.unesp.br:11449/69533Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:00:30.786468Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
3-Dimensional hopf bifurcation via averaging theory |
title |
3-Dimensional hopf bifurcation via averaging theory |
spellingShingle |
3-Dimensional hopf bifurcation via averaging theory Llibre, Jaume Averaging theory Hopf bifurcation Lorenz system |
title_short |
3-Dimensional hopf bifurcation via averaging theory |
title_full |
3-Dimensional hopf bifurcation via averaging theory |
title_fullStr |
3-Dimensional hopf bifurcation via averaging theory |
title_full_unstemmed |
3-Dimensional hopf bifurcation via averaging theory |
title_sort |
3-Dimensional hopf bifurcation via averaging theory |
author |
Llibre, Jaume |
author_facet |
Llibre, Jaume Buzzi, Claudio A. [UNESP] Da Silva, Paulo R. [UNESP] |
author_role |
author |
author2 |
Buzzi, Claudio A. [UNESP] Da Silva, Paulo R. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universitat Autònoma de Barcelona Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Llibre, Jaume Buzzi, Claudio A. [UNESP] Da Silva, Paulo R. [UNESP] |
dc.subject.por.fl_str_mv |
Averaging theory Hopf bifurcation Lorenz system |
topic |
Averaging theory Hopf bifurcation Lorenz system |
description |
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03-01 2014-05-27T11:22:24Z 2014-05-27T11:22:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract http://dx.doi.org/10.3934/dcds.2007.17.529 Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007. 1078-0947 http://hdl.handle.net/11449/69533 10.3934/dcds.2007.17.529 WOS:000242696700005 2-s2.0-34247228649 2-s2.0-34247228649.pdf 6682867760717445 0000-0003-2037-8417 |
url |
http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract http://dx.doi.org/10.3934/dcds.2007.17.529 http://hdl.handle.net/11449/69533 |
identifier_str_mv |
Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007. 1078-0947 10.3934/dcds.2007.17.529 WOS:000242696700005 2-s2.0-34247228649 2-s2.0-34247228649.pdf 6682867760717445 0000-0003-2037-8417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Discrete and Continuous Dynamical Systems 0.976 1,592 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
529-540 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128738582331392 |