3-Dimensional hopf bifurcation via averaging theory

Detalhes bibliográficos
Autor(a) principal: Llibre, Jaume
Data de Publicação: 2007
Outros Autores: Buzzi, Claudio A. [UNESP], Da Silva, Paulo R. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract
http://dx.doi.org/10.3934/dcds.2007.17.529
http://hdl.handle.net/11449/69533
Resumo: We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
id UNSP_26d8d2a6f4b7c95a438b2a6534e7be2a
oai_identifier_str oai:repositorio.unesp.br:11449/69533
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling 3-Dimensional hopf bifurcation via averaging theoryAveraging theoryHopf bifurcationLorenz systemWe consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, BarcelonaDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. PauloDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. PauloUniversitat Autònoma de BarcelonaUniversidade Estadual Paulista (Unesp)Llibre, JaumeBuzzi, Claudio A. [UNESP]Da Silva, Paulo R. [UNESP]2014-05-27T11:22:24Z2014-05-27T11:22:24Z2007-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article529-540application/pdfhttp://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstracthttp://dx.doi.org/10.3934/dcds.2007.17.529Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.1078-0947http://hdl.handle.net/11449/6953310.3934/dcds.2007.17.529WOS:0002426967000052-s2.0-342472286492-s2.0-34247228649.pdf66828677607174450000-0003-2037-8417Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDiscrete and Continuous Dynamical Systems0.9761,592info:eu-repo/semantics/openAccess2023-11-06T06:08:06Zoai:repositorio.unesp.br:11449/69533Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:00:30.786468Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv 3-Dimensional hopf bifurcation via averaging theory
title 3-Dimensional hopf bifurcation via averaging theory
spellingShingle 3-Dimensional hopf bifurcation via averaging theory
Llibre, Jaume
Averaging theory
Hopf bifurcation
Lorenz system
title_short 3-Dimensional hopf bifurcation via averaging theory
title_full 3-Dimensional hopf bifurcation via averaging theory
title_fullStr 3-Dimensional hopf bifurcation via averaging theory
title_full_unstemmed 3-Dimensional hopf bifurcation via averaging theory
title_sort 3-Dimensional hopf bifurcation via averaging theory
author Llibre, Jaume
author_facet Llibre, Jaume
Buzzi, Claudio A. [UNESP]
Da Silva, Paulo R. [UNESP]
author_role author
author2 Buzzi, Claudio A. [UNESP]
Da Silva, Paulo R. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universitat Autònoma de Barcelona
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Llibre, Jaume
Buzzi, Claudio A. [UNESP]
Da Silva, Paulo R. [UNESP]
dc.subject.por.fl_str_mv Averaging theory
Hopf bifurcation
Lorenz system
topic Averaging theory
Hopf bifurcation
Lorenz system
description We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-01
2014-05-27T11:22:24Z
2014-05-27T11:22:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract
http://dx.doi.org/10.3934/dcds.2007.17.529
Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.
1078-0947
http://hdl.handle.net/11449/69533
10.3934/dcds.2007.17.529
WOS:000242696700005
2-s2.0-34247228649
2-s2.0-34247228649.pdf
6682867760717445
0000-0003-2037-8417
url http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract
http://dx.doi.org/10.3934/dcds.2007.17.529
http://hdl.handle.net/11449/69533
identifier_str_mv Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.
1078-0947
10.3934/dcds.2007.17.529
WOS:000242696700005
2-s2.0-34247228649
2-s2.0-34247228649.pdf
6682867760717445
0000-0003-2037-8417
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Discrete and Continuous Dynamical Systems
0.976
1,592
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 529-540
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128738582331392