Transcritical and zero-Hopf bifurcations in the Genesio system

Detalhes bibliográficos
Autor(a) principal: Cardin, Pedro Toniol [UNESP]
Data de Publicação: 2017
Outros Autores: Llibre, Jaume
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11071-016-3259-2
http://hdl.handle.net/11449/174011
Resumo: In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0.
id UNSP_aad6197d175085514ff4d00d2136e828
oai_identifier_str oai:repositorio.unesp.br:11449/174011
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Transcritical and zero-Hopf bifurcations in the Genesio systemAveraging theoryGenesio systemTranscritical bifurcationZero-Hopf BifurcationIn this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Generalitat de CatalunyaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Ministerio de Economía y CompetitividadDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266Departament de Matemàtiques Universitat Autònoma de BarcelonaDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266FAPESP: 2013/24541-0Generalitat de Catalunya: 2014SGR-568CAPES: 88881.030454/2013-01Ministerio de Economía y Competitividad: MTM2013-40998-PUniversidade Estadual Paulista (Unesp)Universitat Autònoma de BarcelonaCardin, Pedro Toniol [UNESP]Llibre, Jaume2018-12-11T17:08:44Z2018-12-11T17:08:44Z2017-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article547-553application/pdfhttp://dx.doi.org/10.1007/s11071-016-3259-2Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017.1573-269X0924-090Xhttp://hdl.handle.net/11449/17401110.1007/s11071-016-3259-22-s2.0-850074923962-s2.0-85007492396.pdf80328799159066610000-0002-8723-8200Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2024-07-10T15:41:41Zoai:repositorio.unesp.br:11449/174011Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:05:15.887089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Transcritical and zero-Hopf bifurcations in the Genesio system
title Transcritical and zero-Hopf bifurcations in the Genesio system
spellingShingle Transcritical and zero-Hopf bifurcations in the Genesio system
Cardin, Pedro Toniol [UNESP]
Averaging theory
Genesio system
Transcritical bifurcation
Zero-Hopf Bifurcation
title_short Transcritical and zero-Hopf bifurcations in the Genesio system
title_full Transcritical and zero-Hopf bifurcations in the Genesio system
title_fullStr Transcritical and zero-Hopf bifurcations in the Genesio system
title_full_unstemmed Transcritical and zero-Hopf bifurcations in the Genesio system
title_sort Transcritical and zero-Hopf bifurcations in the Genesio system
author Cardin, Pedro Toniol [UNESP]
author_facet Cardin, Pedro Toniol [UNESP]
Llibre, Jaume
author_role author
author2 Llibre, Jaume
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universitat Autònoma de Barcelona
dc.contributor.author.fl_str_mv Cardin, Pedro Toniol [UNESP]
Llibre, Jaume
dc.subject.por.fl_str_mv Averaging theory
Genesio system
Transcritical bifurcation
Zero-Hopf Bifurcation
topic Averaging theory
Genesio system
Transcritical bifurcation
Zero-Hopf Bifurcation
description In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-01
2018-12-11T17:08:44Z
2018-12-11T17:08:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11071-016-3259-2
Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017.
1573-269X
0924-090X
http://hdl.handle.net/11449/174011
10.1007/s11071-016-3259-2
2-s2.0-85007492396
2-s2.0-85007492396.pdf
8032879915906661
0000-0002-8723-8200
url http://dx.doi.org/10.1007/s11071-016-3259-2
http://hdl.handle.net/11449/174011
identifier_str_mv Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017.
1573-269X
0924-090X
10.1007/s11071-016-3259-2
2-s2.0-85007492396
2-s2.0-85007492396.pdf
8032879915906661
0000-0002-8723-8200
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Dynamics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 547-553
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129017822314496