Transcritical and zero-Hopf bifurcations in the Genesio system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s11071-016-3259-2 http://hdl.handle.net/11449/174011 |
Resumo: | In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0. |
id |
UNSP_aad6197d175085514ff4d00d2136e828 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174011 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Transcritical and zero-Hopf bifurcations in the Genesio systemAveraging theoryGenesio systemTranscritical bifurcationZero-Hopf BifurcationIn this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Generalitat de CatalunyaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Ministerio de Economía y CompetitividadDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266Departament de Matemàtiques Universitat Autònoma de BarcelonaDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266FAPESP: 2013/24541-0Generalitat de Catalunya: 2014SGR-568CAPES: 88881.030454/2013-01Ministerio de Economía y Competitividad: MTM2013-40998-PUniversidade Estadual Paulista (Unesp)Universitat Autònoma de BarcelonaCardin, Pedro Toniol [UNESP]Llibre, Jaume2018-12-11T17:08:44Z2018-12-11T17:08:44Z2017-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article547-553application/pdfhttp://dx.doi.org/10.1007/s11071-016-3259-2Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017.1573-269X0924-090Xhttp://hdl.handle.net/11449/17401110.1007/s11071-016-3259-22-s2.0-850074923962-s2.0-85007492396.pdf80328799159066610000-0002-8723-8200Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2024-07-10T15:41:41Zoai:repositorio.unesp.br:11449/174011Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:05:15.887089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Transcritical and zero-Hopf bifurcations in the Genesio system |
title |
Transcritical and zero-Hopf bifurcations in the Genesio system |
spellingShingle |
Transcritical and zero-Hopf bifurcations in the Genesio system Cardin, Pedro Toniol [UNESP] Averaging theory Genesio system Transcritical bifurcation Zero-Hopf Bifurcation |
title_short |
Transcritical and zero-Hopf bifurcations in the Genesio system |
title_full |
Transcritical and zero-Hopf bifurcations in the Genesio system |
title_fullStr |
Transcritical and zero-Hopf bifurcations in the Genesio system |
title_full_unstemmed |
Transcritical and zero-Hopf bifurcations in the Genesio system |
title_sort |
Transcritical and zero-Hopf bifurcations in the Genesio system |
author |
Cardin, Pedro Toniol [UNESP] |
author_facet |
Cardin, Pedro Toniol [UNESP] Llibre, Jaume |
author_role |
author |
author2 |
Llibre, Jaume |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universitat Autònoma de Barcelona |
dc.contributor.author.fl_str_mv |
Cardin, Pedro Toniol [UNESP] Llibre, Jaume |
dc.subject.por.fl_str_mv |
Averaging theory Genesio system Transcritical bifurcation Zero-Hopf Bifurcation |
topic |
Averaging theory Genesio system Transcritical bifurcation Zero-Hopf Bifurcation |
description |
In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-01 2018-12-11T17:08:44Z 2018-12-11T17:08:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11071-016-3259-2 Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017. 1573-269X 0924-090X http://hdl.handle.net/11449/174011 10.1007/s11071-016-3259-2 2-s2.0-85007492396 2-s2.0-85007492396.pdf 8032879915906661 0000-0002-8723-8200 |
url |
http://dx.doi.org/10.1007/s11071-016-3259-2 http://hdl.handle.net/11449/174011 |
identifier_str_mv |
Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017. 1573-269X 0924-090X 10.1007/s11071-016-3259-2 2-s2.0-85007492396 2-s2.0-85007492396.pdf 8032879915906661 0000-0002-8723-8200 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Dynamics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
547-553 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129017822314496 |