Semi-supervised learning with convolutional neural networks for UAV images automatic recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.compag.2019.104932 http://hdl.handle.net/11449/186844 |
Resumo: | The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples. |
id |
UNSP_27ab7415ccc315fe00b196ccf62f029e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186844 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognitionSemi-supervised learningConvolutional Neural NetworksFine tuningTransfer learningThe annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)NVIDIA CorporationFoundation to Support the Development of Teaching, Science and Technology of the state of Mato Grosso do Sul (FUNDECT)Fed Univ Grande Dourados, BR-79804970 Dourados, BrazilUniv Catolica Dom Bosco, BR-79117900 Campo Grande, BrazilSao Paulo State Univ UNESP, BR-17033360 Bauru, BrazilSao Paulo State Univ UNESP, BR-17033360 Bauru, BrazilCNPq: 427968/2018-6CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2015/25739-4FAPESP: 2016/19403-6FUNDUNESP: 2597.2017Elsevier B.V.Fed Univ Grande DouradosUniv Catolica Dom BoscoUniversidade Estadual Paulista (Unesp)Amorim, Willian ParaguassuTetila, Everton CastelaoPistori, HemersonPapa, Joao Paulo [UNESP]2019-10-06T08:12:05Z2019-10-06T08:12:05Z2019-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9http://dx.doi.org/10.1016/j.compag.2019.104932Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019.0168-1699http://hdl.handle.net/11449/18684410.1016/j.compag.2019.104932WOS:000483910100030Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers And Electronics In Agricultureinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/186844Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:00:32.926967Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
title |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
spellingShingle |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition Amorim, Willian Paraguassu Semi-supervised learning Convolutional Neural Networks Fine tuning Transfer learning |
title_short |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
title_full |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
title_fullStr |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
title_full_unstemmed |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
title_sort |
Semi-supervised learning with convolutional neural networks for UAV images automatic recognition |
author |
Amorim, Willian Paraguassu |
author_facet |
Amorim, Willian Paraguassu Tetila, Everton Castelao Pistori, Hemerson Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Tetila, Everton Castelao Pistori, Hemerson Papa, Joao Paulo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Fed Univ Grande Dourados Univ Catolica Dom Bosco Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Amorim, Willian Paraguassu Tetila, Everton Castelao Pistori, Hemerson Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Semi-supervised learning Convolutional Neural Networks Fine tuning Transfer learning |
topic |
Semi-supervised learning Convolutional Neural Networks Fine tuning Transfer learning |
description |
The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T08:12:05Z 2019-10-06T08:12:05Z 2019-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.compag.2019.104932 Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019. 0168-1699 http://hdl.handle.net/11449/186844 10.1016/j.compag.2019.104932 WOS:000483910100030 |
url |
http://dx.doi.org/10.1016/j.compag.2019.104932 http://hdl.handle.net/11449/186844 |
identifier_str_mv |
Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 164, 9 p., 2019. 0168-1699 10.1016/j.compag.2019.104932 WOS:000483910100030 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computers And Electronics In Agriculture |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129273481920512 |