Semi-supervised learning with connectivity-driven convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.patrec.2019.08.012 http://hdl.handle.net/11449/190583 |
Resumo: | The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods. |
id |
UNSP_3de4ff014cd2baa3ae0efd71b24e79ef |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/190583 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Semi-supervised learning with connectivity-driven convolutional neural networksConvolutional neural networksOptimum-path forestSemi-supervised learningThe annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Federal University of Grande DouradosSão Paulo State University - UNESPCorumbá Concessões S.ASão Paulo State University - UNESPFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2015/25739-4FAPESP: 2016/19403-6CNPq: 307066/2017-7CNPq: 427968/2018-6Federal University of Grande DouradosUniversidade Estadual Paulista (Unesp)Corumbá Concessões S.AAmorim, Willian ParaguassuRosa, Gustavo Henrique [UNESP]Thomazella, Rogério [UNESP]Castanho, José Eduardo Cogo [UNESP]Dotto, Fábio Romano Lofrano [UNESP]Júnior, Oswaldo Pons RodriguesMarana, Aparecido Nilceu [UNESP]Papa, João Paulo [UNESP]2019-10-06T17:18:08Z2019-10-06T17:18:08Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16-22http://dx.doi.org/10.1016/j.patrec.2019.08.012Pattern Recognition Letters, v. 128, p. 16-22.0167-8655http://hdl.handle.net/11449/19058310.1016/j.patrec.2019.08.0122-s2.0-85070863519Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPattern Recognition Lettersinfo:eu-repo/semantics/openAccess2024-06-28T13:34:10Zoai:repositorio.unesp.br:11449/190583Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:51:53.964018Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Semi-supervised learning with connectivity-driven convolutional neural networks |
title |
Semi-supervised learning with connectivity-driven convolutional neural networks |
spellingShingle |
Semi-supervised learning with connectivity-driven convolutional neural networks Amorim, Willian Paraguassu Convolutional neural networks Optimum-path forest Semi-supervised learning |
title_short |
Semi-supervised learning with connectivity-driven convolutional neural networks |
title_full |
Semi-supervised learning with connectivity-driven convolutional neural networks |
title_fullStr |
Semi-supervised learning with connectivity-driven convolutional neural networks |
title_full_unstemmed |
Semi-supervised learning with connectivity-driven convolutional neural networks |
title_sort |
Semi-supervised learning with connectivity-driven convolutional neural networks |
author |
Amorim, Willian Paraguassu |
author_facet |
Amorim, Willian Paraguassu Rosa, Gustavo Henrique [UNESP] Thomazella, Rogério [UNESP] Castanho, José Eduardo Cogo [UNESP] Dotto, Fábio Romano Lofrano [UNESP] Júnior, Oswaldo Pons Rodrigues Marana, Aparecido Nilceu [UNESP] Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Rosa, Gustavo Henrique [UNESP] Thomazella, Rogério [UNESP] Castanho, José Eduardo Cogo [UNESP] Dotto, Fábio Romano Lofrano [UNESP] Júnior, Oswaldo Pons Rodrigues Marana, Aparecido Nilceu [UNESP] Papa, João Paulo [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Federal University of Grande Dourados Universidade Estadual Paulista (Unesp) Corumbá Concessões S.A |
dc.contributor.author.fl_str_mv |
Amorim, Willian Paraguassu Rosa, Gustavo Henrique [UNESP] Thomazella, Rogério [UNESP] Castanho, José Eduardo Cogo [UNESP] Dotto, Fábio Romano Lofrano [UNESP] Júnior, Oswaldo Pons Rodrigues Marana, Aparecido Nilceu [UNESP] Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Convolutional neural networks Optimum-path forest Semi-supervised learning |
topic |
Convolutional neural networks Optimum-path forest Semi-supervised learning |
description |
The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T17:18:08Z 2019-10-06T17:18:08Z 2019-12-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.patrec.2019.08.012 Pattern Recognition Letters, v. 128, p. 16-22. 0167-8655 http://hdl.handle.net/11449/190583 10.1016/j.patrec.2019.08.012 2-s2.0-85070863519 |
url |
http://dx.doi.org/10.1016/j.patrec.2019.08.012 http://hdl.handle.net/11449/190583 |
identifier_str_mv |
Pattern Recognition Letters, v. 128, p. 16-22. 0167-8655 10.1016/j.patrec.2019.08.012 2-s2.0-85070863519 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pattern Recognition Letters |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16-22 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128426756800512 |