Semi-supervised learning with connectivity-driven convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Amorim, Willian Paraguassu
Data de Publicação: 2019
Outros Autores: Rosa, Gustavo Henrique [UNESP], Thomazella, Rogério [UNESP], Castanho, José Eduardo Cogo [UNESP], Dotto, Fábio Romano Lofrano [UNESP], Júnior, Oswaldo Pons Rodrigues, Marana, Aparecido Nilceu [UNESP], Papa, João Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.patrec.2019.08.012
http://hdl.handle.net/11449/190583
Resumo: The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.
id UNSP_3de4ff014cd2baa3ae0efd71b24e79ef
oai_identifier_str oai:repositorio.unesp.br:11449/190583
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Semi-supervised learning with connectivity-driven convolutional neural networksConvolutional neural networksOptimum-path forestSemi-supervised learningThe annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Federal University of Grande DouradosSão Paulo State University - UNESPCorumbá Concessões S.ASão Paulo State University - UNESPFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2015/25739-4FAPESP: 2016/19403-6CNPq: 307066/2017-7CNPq: 427968/2018-6Federal University of Grande DouradosUniversidade Estadual Paulista (Unesp)Corumbá Concessões S.AAmorim, Willian ParaguassuRosa, Gustavo Henrique [UNESP]Thomazella, Rogério [UNESP]Castanho, José Eduardo Cogo [UNESP]Dotto, Fábio Romano Lofrano [UNESP]Júnior, Oswaldo Pons RodriguesMarana, Aparecido Nilceu [UNESP]Papa, João Paulo [UNESP]2019-10-06T17:18:08Z2019-10-06T17:18:08Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16-22http://dx.doi.org/10.1016/j.patrec.2019.08.012Pattern Recognition Letters, v. 128, p. 16-22.0167-8655http://hdl.handle.net/11449/19058310.1016/j.patrec.2019.08.0122-s2.0-85070863519Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPattern Recognition Lettersinfo:eu-repo/semantics/openAccess2024-06-28T13:34:10Zoai:repositorio.unesp.br:11449/190583Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:51:53.964018Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Semi-supervised learning with connectivity-driven convolutional neural networks
title Semi-supervised learning with connectivity-driven convolutional neural networks
spellingShingle Semi-supervised learning with connectivity-driven convolutional neural networks
Amorim, Willian Paraguassu
Convolutional neural networks
Optimum-path forest
Semi-supervised learning
title_short Semi-supervised learning with connectivity-driven convolutional neural networks
title_full Semi-supervised learning with connectivity-driven convolutional neural networks
title_fullStr Semi-supervised learning with connectivity-driven convolutional neural networks
title_full_unstemmed Semi-supervised learning with connectivity-driven convolutional neural networks
title_sort Semi-supervised learning with connectivity-driven convolutional neural networks
author Amorim, Willian Paraguassu
author_facet Amorim, Willian Paraguassu
Rosa, Gustavo Henrique [UNESP]
Thomazella, Rogério [UNESP]
Castanho, José Eduardo Cogo [UNESP]
Dotto, Fábio Romano Lofrano [UNESP]
Júnior, Oswaldo Pons Rodrigues
Marana, Aparecido Nilceu [UNESP]
Papa, João Paulo [UNESP]
author_role author
author2 Rosa, Gustavo Henrique [UNESP]
Thomazella, Rogério [UNESP]
Castanho, José Eduardo Cogo [UNESP]
Dotto, Fábio Romano Lofrano [UNESP]
Júnior, Oswaldo Pons Rodrigues
Marana, Aparecido Nilceu [UNESP]
Papa, João Paulo [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Federal University of Grande Dourados
Universidade Estadual Paulista (Unesp)
Corumbá Concessões S.A
dc.contributor.author.fl_str_mv Amorim, Willian Paraguassu
Rosa, Gustavo Henrique [UNESP]
Thomazella, Rogério [UNESP]
Castanho, José Eduardo Cogo [UNESP]
Dotto, Fábio Romano Lofrano [UNESP]
Júnior, Oswaldo Pons Rodrigues
Marana, Aparecido Nilceu [UNESP]
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Convolutional neural networks
Optimum-path forest
Semi-supervised learning
topic Convolutional neural networks
Optimum-path forest
Semi-supervised learning
description The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T17:18:08Z
2019-10-06T17:18:08Z
2019-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.patrec.2019.08.012
Pattern Recognition Letters, v. 128, p. 16-22.
0167-8655
http://hdl.handle.net/11449/190583
10.1016/j.patrec.2019.08.012
2-s2.0-85070863519
url http://dx.doi.org/10.1016/j.patrec.2019.08.012
http://hdl.handle.net/11449/190583
identifier_str_mv Pattern Recognition Letters, v. 128, p. 16-22.
0167-8655
10.1016/j.patrec.2019.08.012
2-s2.0-85070863519
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pattern Recognition Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 16-22
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128426756800512