Cell growth on 3D microstructured surfaces

Detalhes bibliográficos
Autor(a) principal: Araujo, W. W.R.
Data de Publicação: 2016
Outros Autores: Teixeira, F. S., Da Silva, G. N., Salvadori, D. M.F. [UNESP], Salvadori, M. C., Brown, I. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.msec.2016.03.026
http://hdl.handle.net/11449/168546
Resumo: Chinese Hamster Ovary (CHO) cell cultures were grown on surfaces lithographed with periodic 3D hexagonal microcavity array morphology. The range of microcavity size (inscribed circle diameter) was from 12 μm to 560 μm. CHO cells were grown also on flat surfaces. The characterization was performed with respect to cell growth density (number of nuclei per unit area) by fluorescence optical microscopy and evaluated by correlation function analysis. We found that optimum microcavity radius was 80 μm, concerning to the maximum cell growth density, being even greater than the growth density on a flat (unstructured) substrate of the same material. This finding can be important for optimization of biotechnological processes and devices.
id UNSP_2fed50826d1d4b07515754303890e6b3
oai_identifier_str oai:repositorio.unesp.br:11449/168546
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Cell growth on 3D microstructured surfacesBiomaterialsCell aggregationOptical microscopySurface patterningChinese Hamster Ovary (CHO) cell cultures were grown on surfaces lithographed with periodic 3D hexagonal microcavity array morphology. The range of microcavity size (inscribed circle diameter) was from 12 μm to 560 μm. CHO cells were grown also on flat surfaces. The characterization was performed with respect to cell growth density (number of nuclei per unit area) by fluorescence optical microscopy and evaluated by correlation function analysis. We found that optimum microcavity radius was 80 μm, concerning to the maximum cell growth density, being even greater than the growth density on a flat (unstructured) substrate of the same material. This finding can be important for optimization of biotechnological processes and devices.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institute of Physics University of São Paulo, C.P. 66318Pharmacy School UFOP Federal University of Ouro PretoBotucatu Medical School UNESP São Paulo State UniversityLawrence Berkeley National Laboratory, 1 Cyclotron RoadBotucatu Medical School UNESP São Paulo State UniversityCNPq: CNPq-157021/2011-4Universidade de São Paulo (USP)Federal University of Ouro PretoUniversidade Estadual Paulista (Unesp)Lawrence Berkeley National LaboratoryAraujo, W. W.R.Teixeira, F. S.Da Silva, G. N.Salvadori, D. M.F. [UNESP]Salvadori, M. C.Brown, I. G.2018-12-11T16:41:43Z2018-12-11T16:41:43Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article686-689application/pdfhttp://dx.doi.org/10.1016/j.msec.2016.03.026Materials Science and Engineering C, v. 63, p. 686-689.0928-4931http://hdl.handle.net/11449/16854610.1016/j.msec.2016.03.0262-s2.0-849626672392-s2.0-84962667239.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Science and Engineering C1,110info:eu-repo/semantics/openAccess2023-10-31T06:08:40Zoai:repositorio.unesp.br:11449/168546Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:15.291249Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Cell growth on 3D microstructured surfaces
title Cell growth on 3D microstructured surfaces
spellingShingle Cell growth on 3D microstructured surfaces
Araujo, W. W.R.
Biomaterials
Cell aggregation
Optical microscopy
Surface patterning
title_short Cell growth on 3D microstructured surfaces
title_full Cell growth on 3D microstructured surfaces
title_fullStr Cell growth on 3D microstructured surfaces
title_full_unstemmed Cell growth on 3D microstructured surfaces
title_sort Cell growth on 3D microstructured surfaces
author Araujo, W. W.R.
author_facet Araujo, W. W.R.
Teixeira, F. S.
Da Silva, G. N.
Salvadori, D. M.F. [UNESP]
Salvadori, M. C.
Brown, I. G.
author_role author
author2 Teixeira, F. S.
Da Silva, G. N.
Salvadori, D. M.F. [UNESP]
Salvadori, M. C.
Brown, I. G.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Federal University of Ouro Preto
Universidade Estadual Paulista (Unesp)
Lawrence Berkeley National Laboratory
dc.contributor.author.fl_str_mv Araujo, W. W.R.
Teixeira, F. S.
Da Silva, G. N.
Salvadori, D. M.F. [UNESP]
Salvadori, M. C.
Brown, I. G.
dc.subject.por.fl_str_mv Biomaterials
Cell aggregation
Optical microscopy
Surface patterning
topic Biomaterials
Cell aggregation
Optical microscopy
Surface patterning
description Chinese Hamster Ovary (CHO) cell cultures were grown on surfaces lithographed with periodic 3D hexagonal microcavity array morphology. The range of microcavity size (inscribed circle diameter) was from 12 μm to 560 μm. CHO cells were grown also on flat surfaces. The characterization was performed with respect to cell growth density (number of nuclei per unit area) by fluorescence optical microscopy and evaluated by correlation function analysis. We found that optimum microcavity radius was 80 μm, concerning to the maximum cell growth density, being even greater than the growth density on a flat (unstructured) substrate of the same material. This finding can be important for optimization of biotechnological processes and devices.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
2018-12-11T16:41:43Z
2018-12-11T16:41:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.msec.2016.03.026
Materials Science and Engineering C, v. 63, p. 686-689.
0928-4931
http://hdl.handle.net/11449/168546
10.1016/j.msec.2016.03.026
2-s2.0-84962667239
2-s2.0-84962667239.pdf
url http://dx.doi.org/10.1016/j.msec.2016.03.026
http://hdl.handle.net/11449/168546
identifier_str_mv Materials Science and Engineering C, v. 63, p. 686-689.
0928-4931
10.1016/j.msec.2016.03.026
2-s2.0-84962667239
2-s2.0-84962667239.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Science and Engineering C
1,110
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 686-689
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128665713639424