Limit cycles in 4-star-symmetric planar piecewise linear systems

Detalhes bibliográficos
Autor(a) principal: Buzzi, Claudio A. [UNESP]
Data de Publicação: 2020
Outros Autores: Medrado, Joao C., Torregrosa, Joan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jde.2019.09.008
http://hdl.handle.net/11449/196454
Resumo: Our interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved.
id UNSP_316397f0ee64f35afbbd886ceb3711fe
oai_identifier_str oai:repositorio.unesp.br:11449/196454
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Limit cycles in 4-star-symmetric planar piecewise linear systemsNon-smooth differential system4-cross-symmetricCyclicityLimit cyclesCenter-focus problemOur interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved.Ministerio de Economia, Industria y Competitividad - Agencia Estatal de Investigacion (FEDER)Agencia de Gestio d'Ajuts Universitaris i de RecercaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian agency FAPEGEuropean Union's Horizon 2020 research and innovation programmeUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, BrazilUniv Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, BrazilUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, SpainUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, BrazilMinisterio de Economia, Industria y Competitividad - Agencia Estatal de Investigacion (FEDER): MTM2016-77278-PAgencia de Gestio d'Ajuts Universitaris i de Recerca: 2017 SGR 1617FAPESP: 2013/24541-0FAPESP: 2017/03352-6CAPES: PROCAD 88881.068462/2014-01CNPq: 308006/2015-1Brazilian agency FAPEG: 29199/2018CNPq: PRONEX 2017-10267000508European Union's Horizon 2020 research and innovation programme: Dynamics-H2020-MSCA-RISE-2017-777911Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Univ Autonoma BarcelonaBuzzi, Claudio A. [UNESP]Medrado, Joao C.Torregrosa, Joan2020-12-10T19:45:32Z2020-12-10T19:45:32Z2020-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2414-2434http://dx.doi.org/10.1016/j.jde.2019.09.008Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020.0022-0396http://hdl.handle.net/11449/19645410.1016/j.jde.2019.09.008WOS:00050493040001966828677607174450000-0003-2037-8417Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Differential Equationsinfo:eu-repo/semantics/openAccess2021-12-10T14:38:16Zoai:repositorio.unesp.br:11449/196454Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:21:28.850216Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Limit cycles in 4-star-symmetric planar piecewise linear systems
title Limit cycles in 4-star-symmetric planar piecewise linear systems
spellingShingle Limit cycles in 4-star-symmetric planar piecewise linear systems
Buzzi, Claudio A. [UNESP]
Non-smooth differential system
4-cross-symmetric
Cyclicity
Limit cycles
Center-focus problem
title_short Limit cycles in 4-star-symmetric planar piecewise linear systems
title_full Limit cycles in 4-star-symmetric planar piecewise linear systems
title_fullStr Limit cycles in 4-star-symmetric planar piecewise linear systems
title_full_unstemmed Limit cycles in 4-star-symmetric planar piecewise linear systems
title_sort Limit cycles in 4-star-symmetric planar piecewise linear systems
author Buzzi, Claudio A. [UNESP]
author_facet Buzzi, Claudio A. [UNESP]
Medrado, Joao C.
Torregrosa, Joan
author_role author
author2 Medrado, Joao C.
Torregrosa, Joan
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de Goiás (UFG)
Univ Autonoma Barcelona
dc.contributor.author.fl_str_mv Buzzi, Claudio A. [UNESP]
Medrado, Joao C.
Torregrosa, Joan
dc.subject.por.fl_str_mv Non-smooth differential system
4-cross-symmetric
Cyclicity
Limit cycles
Center-focus problem
topic Non-smooth differential system
4-cross-symmetric
Cyclicity
Limit cycles
Center-focus problem
description Our interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T19:45:32Z
2020-12-10T19:45:32Z
2020-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jde.2019.09.008
Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020.
0022-0396
http://hdl.handle.net/11449/196454
10.1016/j.jde.2019.09.008
WOS:000504930400019
6682867760717445
0000-0003-2037-8417
url http://dx.doi.org/10.1016/j.jde.2019.09.008
http://hdl.handle.net/11449/196454
identifier_str_mv Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020.
0022-0396
10.1016/j.jde.2019.09.008
WOS:000504930400019
6682867760717445
0000-0003-2037-8417
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Differential Equations
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2414-2434
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129419648172032