Limit cycles in 4-star-symmetric planar piecewise linear systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jde.2019.09.008 http://hdl.handle.net/11449/196454 |
Resumo: | Our interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved. |
id |
UNSP_316397f0ee64f35afbbd886ceb3711fe |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196454 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Limit cycles in 4-star-symmetric planar piecewise linear systemsNon-smooth differential system4-cross-symmetricCyclicityLimit cyclesCenter-focus problemOur interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved.Ministerio de Economia, Industria y Competitividad - Agencia Estatal de Investigacion (FEDER)Agencia de Gestio d'Ajuts Universitaris i de RecercaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian agency FAPEGEuropean Union's Horizon 2020 research and innovation programmeUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, BrazilUniv Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, BrazilUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, SpainUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, BrazilMinisterio de Economia, Industria y Competitividad - Agencia Estatal de Investigacion (FEDER): MTM2016-77278-PAgencia de Gestio d'Ajuts Universitaris i de Recerca: 2017 SGR 1617FAPESP: 2013/24541-0FAPESP: 2017/03352-6CAPES: PROCAD 88881.068462/2014-01CNPq: 308006/2015-1Brazilian agency FAPEG: 29199/2018CNPq: PRONEX 2017-10267000508European Union's Horizon 2020 research and innovation programme: Dynamics-H2020-MSCA-RISE-2017-777911Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Univ Autonoma BarcelonaBuzzi, Claudio A. [UNESP]Medrado, Joao C.Torregrosa, Joan2020-12-10T19:45:32Z2020-12-10T19:45:32Z2020-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2414-2434http://dx.doi.org/10.1016/j.jde.2019.09.008Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020.0022-0396http://hdl.handle.net/11449/19645410.1016/j.jde.2019.09.008WOS:00050493040001966828677607174450000-0003-2037-8417Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Differential Equationsinfo:eu-repo/semantics/openAccess2021-12-10T14:38:16Zoai:repositorio.unesp.br:11449/196454Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:21:28.850216Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
title |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
spellingShingle |
Limit cycles in 4-star-symmetric planar piecewise linear systems Buzzi, Claudio A. [UNESP] Non-smooth differential system 4-cross-symmetric Cyclicity Limit cycles Center-focus problem |
title_short |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
title_full |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
title_fullStr |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
title_full_unstemmed |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
title_sort |
Limit cycles in 4-star-symmetric planar piecewise linear systems |
author |
Buzzi, Claudio A. [UNESP] |
author_facet |
Buzzi, Claudio A. [UNESP] Medrado, Joao C. Torregrosa, Joan |
author_role |
author |
author2 |
Medrado, Joao C. Torregrosa, Joan |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de Goiás (UFG) Univ Autonoma Barcelona |
dc.contributor.author.fl_str_mv |
Buzzi, Claudio A. [UNESP] Medrado, Joao C. Torregrosa, Joan |
dc.subject.por.fl_str_mv |
Non-smooth differential system 4-cross-symmetric Cyclicity Limit cycles Center-focus problem |
topic |
Non-smooth differential system 4-cross-symmetric Cyclicity Limit cycles Center-focus problem |
description |
Our interest is centered in the study of the number of limit cycles for nonsmooth piecewise linear vector fields on the plane when the switching curve is xy=0. We consider the symmetric case. That is, one vector field defined in the odd quadrants and the other in the even ones. We deal with equilibrium points of center-focus type, with matrices in real Jordan form, in each vector field when the infinity is monodromic. In this case, we provide the center classification at infinity, we prove that the maximum order of a weak focus is five. Moreover, we show the existence of systems exhibiting five limit cycles bifurcating from infinity. (C) 2019 Elsevier Inc. All rights reserved. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T19:45:32Z 2020-12-10T19:45:32Z 2020-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jde.2019.09.008 Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020. 0022-0396 http://hdl.handle.net/11449/196454 10.1016/j.jde.2019.09.008 WOS:000504930400019 6682867760717445 0000-0003-2037-8417 |
url |
http://dx.doi.org/10.1016/j.jde.2019.09.008 http://hdl.handle.net/11449/196454 |
identifier_str_mv |
Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 268, n. 5, p. 2414-2434, 2020. 0022-0396 10.1016/j.jde.2019.09.008 WOS:000504930400019 6682867760717445 0000-0003-2037-8417 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Differential Equations |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2414-2434 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129419648172032 |