A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers

Detalhes bibliográficos
Autor(a) principal: Mantovani, Rafael G.
Data de Publicação: 2019
Outros Autores: Rossi, Andre L. D. [UNESP], Alcobaca, Edesio, Vanschoren, Joaquin, Carvalho, Andre C. P. L. F. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ins.2019.06.005
http://hdl.handle.net/11449/186030
Resumo: For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc.
id UNSP_36d1b24f8bcab760b45bb97c9d0bfda7
oai_identifier_str oai:repositorio.unesp.br:11449/186030
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiersMeta-learningRecommender systemTuning recommendationHyperparameter tuningSupport vector machinesFor many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, BrazilEindhoven Univ Technol, Eindhoven, NetherlandsUniv Estadual Paulista, Campus Itapeva, Sao Paulo, BrazilFed Technol Univ, Campus Apucarana,R Marcilio Dias 635, BR-86812460 Apucarana, PR, BrazilUniv Estadual Paulista, Campus Itapeva, Sao Paulo, BrazilFAPESP: 2012/23114-9FAPESP: 2015/03986-0FAPESP: 2018/14819-5Elsevier B.V.Universidade de São Paulo (USP)Eindhoven Univ TechnolUniversidade Estadual Paulista (Unesp)Fed Technol UnivMantovani, Rafael G.Rossi, Andre L. D. [UNESP]Alcobaca, EdesioVanschoren, JoaquinCarvalho, Andre C. P. L. F. de2019-10-04T12:40:43Z2019-10-04T12:40:43Z2019-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article193-221http://dx.doi.org/10.1016/j.ins.2019.06.005Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019.0020-0255http://hdl.handle.net/11449/18603010.1016/j.ins.2019.06.005WOS:000480663900013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciencesinfo:eu-repo/semantics/openAccess2024-11-22T13:48:32Zoai:repositorio.unesp.br:11449/186030Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-22T13:48:32Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
title A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
spellingShingle A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
Mantovani, Rafael G.
Meta-learning
Recommender system
Tuning recommendation
Hyperparameter tuning
Support vector machines
title_short A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
title_full A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
title_fullStr A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
title_full_unstemmed A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
title_sort A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
author Mantovani, Rafael G.
author_facet Mantovani, Rafael G.
Rossi, Andre L. D. [UNESP]
Alcobaca, Edesio
Vanschoren, Joaquin
Carvalho, Andre C. P. L. F. de
author_role author
author2 Rossi, Andre L. D. [UNESP]
Alcobaca, Edesio
Vanschoren, Joaquin
Carvalho, Andre C. P. L. F. de
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Eindhoven Univ Technol
Universidade Estadual Paulista (Unesp)
Fed Technol Univ
dc.contributor.author.fl_str_mv Mantovani, Rafael G.
Rossi, Andre L. D. [UNESP]
Alcobaca, Edesio
Vanschoren, Joaquin
Carvalho, Andre C. P. L. F. de
dc.subject.por.fl_str_mv Meta-learning
Recommender system
Tuning recommendation
Hyperparameter tuning
Support vector machines
topic Meta-learning
Recommender system
Tuning recommendation
Hyperparameter tuning
Support vector machines
description For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:40:43Z
2019-10-04T12:40:43Z
2019-10-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ins.2019.06.005
Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019.
0020-0255
http://hdl.handle.net/11449/186030
10.1016/j.ins.2019.06.005
WOS:000480663900013
url http://dx.doi.org/10.1016/j.ins.2019.06.005
http://hdl.handle.net/11449/186030
identifier_str_mv Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019.
0020-0255
10.1016/j.ins.2019.06.005
WOS:000480663900013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 193-221
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826303572005879808