A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ins.2019.06.005 http://hdl.handle.net/11449/186030 |
Resumo: | For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc. |
id |
UNSP_36d1b24f8bcab760b45bb97c9d0bfda7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186030 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiersMeta-learningRecommender systemTuning recommendationHyperparameter tuningSupport vector machinesFor many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, BrazilEindhoven Univ Technol, Eindhoven, NetherlandsUniv Estadual Paulista, Campus Itapeva, Sao Paulo, BrazilFed Technol Univ, Campus Apucarana,R Marcilio Dias 635, BR-86812460 Apucarana, PR, BrazilUniv Estadual Paulista, Campus Itapeva, Sao Paulo, BrazilFAPESP: 2012/23114-9FAPESP: 2015/03986-0FAPESP: 2018/14819-5Elsevier B.V.Universidade de São Paulo (USP)Eindhoven Univ TechnolUniversidade Estadual Paulista (Unesp)Fed Technol UnivMantovani, Rafael G.Rossi, Andre L. D. [UNESP]Alcobaca, EdesioVanschoren, JoaquinCarvalho, Andre C. P. L. F. de2019-10-04T12:40:43Z2019-10-04T12:40:43Z2019-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article193-221http://dx.doi.org/10.1016/j.ins.2019.06.005Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019.0020-0255http://hdl.handle.net/11449/18603010.1016/j.ins.2019.06.005WOS:000480663900013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciencesinfo:eu-repo/semantics/openAccess2024-11-22T13:48:32Zoai:repositorio.unesp.br:11449/186030Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-22T13:48:32Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
title |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
spellingShingle |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers Mantovani, Rafael G. Meta-learning Recommender system Tuning recommendation Hyperparameter tuning Support vector machines |
title_short |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
title_full |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
title_fullStr |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
title_full_unstemmed |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
title_sort |
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers |
author |
Mantovani, Rafael G. |
author_facet |
Mantovani, Rafael G. Rossi, Andre L. D. [UNESP] Alcobaca, Edesio Vanschoren, Joaquin Carvalho, Andre C. P. L. F. de |
author_role |
author |
author2 |
Rossi, Andre L. D. [UNESP] Alcobaca, Edesio Vanschoren, Joaquin Carvalho, Andre C. P. L. F. de |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Eindhoven Univ Technol Universidade Estadual Paulista (Unesp) Fed Technol Univ |
dc.contributor.author.fl_str_mv |
Mantovani, Rafael G. Rossi, Andre L. D. [UNESP] Alcobaca, Edesio Vanschoren, Joaquin Carvalho, Andre C. P. L. F. de |
dc.subject.por.fl_str_mv |
Meta-learning Recommender system Tuning recommendation Hyperparameter tuning Support vector machines |
topic |
Meta-learning Recommender system Tuning recommendation Hyperparameter tuning Support vector machines |
description |
For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T12:40:43Z 2019-10-04T12:40:43Z 2019-10-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ins.2019.06.005 Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019. 0020-0255 http://hdl.handle.net/11449/186030 10.1016/j.ins.2019.06.005 WOS:000480663900013 |
url |
http://dx.doi.org/10.1016/j.ins.2019.06.005 http://hdl.handle.net/11449/186030 |
identifier_str_mv |
Information Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019. 0020-0255 10.1016/j.ins.2019.06.005 WOS:000480663900013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Information Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
193-221 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826303572005879808 |