Scaling on a Dissipative Standard Mapping

Detalhes bibliográficos
Autor(a) principal: Leonel, Edson Denis [UNESP]
Data de Publicação: 2021
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-981-16-3544-1_11
http://hdl.handle.net/11449/233493
Resumo: We discuss in this chapter the scaling invariance for chaotic orbits near a transition from unlimited to limited diffusion in a dissipative standard mapping, which is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle with a specific action at a given time. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach while a scaling for intermediate time is obtained as dependent on the initial action.
id UNSP_3733022e0905bbab13b77aad4019ded0
oai_identifier_str oai:repositorio.unesp.br:11449/233493
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Scaling on a Dissipative Standard MappingWe discuss in this chapter the scaling invariance for chaotic orbits near a transition from unlimited to limited diffusion in a dissipative standard mapping, which is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle with a specific action at a given time. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach while a scaling for intermediate time is obtained as dependent on the initial action.Departmamento de Física Sao Paulo State UniversityDepartmamento de Física Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Leonel, Edson Denis [UNESP]2022-05-01T08:45:06Z2022-05-01T08:45:06Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart163-169http://dx.doi.org/10.1007/978-981-16-3544-1_11Nonlinear Physical Science, p. 163-169.1867-84591867-8440http://hdl.handle.net/11449/23349310.1007/978-981-16-3544-1_112-s2.0-85114346923Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Physical Scienceinfo:eu-repo/semantics/openAccess2022-05-01T08:45:06Zoai:repositorio.unesp.br:11449/233493Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:15:50.885724Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Scaling on a Dissipative Standard Mapping
title Scaling on a Dissipative Standard Mapping
spellingShingle Scaling on a Dissipative Standard Mapping
Leonel, Edson Denis [UNESP]
title_short Scaling on a Dissipative Standard Mapping
title_full Scaling on a Dissipative Standard Mapping
title_fullStr Scaling on a Dissipative Standard Mapping
title_full_unstemmed Scaling on a Dissipative Standard Mapping
title_sort Scaling on a Dissipative Standard Mapping
author Leonel, Edson Denis [UNESP]
author_facet Leonel, Edson Denis [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Leonel, Edson Denis [UNESP]
description We discuss in this chapter the scaling invariance for chaotic orbits near a transition from unlimited to limited diffusion in a dissipative standard mapping, which is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle with a specific action at a given time. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach while a scaling for intermediate time is obtained as dependent on the initial action.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-05-01T08:45:06Z
2022-05-01T08:45:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-981-16-3544-1_11
Nonlinear Physical Science, p. 163-169.
1867-8459
1867-8440
http://hdl.handle.net/11449/233493
10.1007/978-981-16-3544-1_11
2-s2.0-85114346923
url http://dx.doi.org/10.1007/978-981-16-3544-1_11
http://hdl.handle.net/11449/233493
identifier_str_mv Nonlinear Physical Science, p. 163-169.
1867-8459
1867-8440
10.1007/978-981-16-3544-1_11
2-s2.0-85114346923
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Physical Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 163-169
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128338159468544