Predição de Vencedores em Jogos MOBA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.23919/CISTI.2017.7975774 http://hdl.handle.net/11449/175026 |
Resumo: | Multiplayer Online Battle Arena (MOBA) games are very popular in the current eSport scenario, being highlighted in several competitions around the world. However, the domain of knowledge contained in these games is large, which makes it difficult to discover and predict the course of a match. The present work proposes the application of classification algorithms to determine the team with more chances to win a match. Two classifications procedures were used, one based on the composition of heroes in each team and another considering the duration of the match. The experiments were performed on data collected from 123,326 matches of Dota 2, showing that it was possible to achieve approximately 77% accuracy. The results demonstrate the effectiveness of the application when using techniques assisted by computers, and when using the methodology described in championships or other similar games that require the definition of strategies. |
id |
UNSP_384af6992f13b8501df59cdc75605399 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175026 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Predição de Vencedores em Jogos MOBAPrediction of winners in MOBA gamesClassificationData MiningStrategic GamesMultiplayer Online Battle Arena (MOBA) games are very popular in the current eSport scenario, being highlighted in several competitions around the world. However, the domain of knowledge contained in these games is large, which makes it difficult to discover and predict the course of a match. The present work proposes the application of classification algorithms to determine the team with more chances to win a match. Two classifications procedures were used, one based on the composition of heroes in each team and another considering the duration of the match. The experiments were performed on data collected from 123,326 matches of Dota 2, showing that it was possible to achieve approximately 77% accuracy. The results demonstrate the effectiveness of the application when using techniques assisted by computers, and when using the methodology described in championships or other similar games that require the definition of strategies.Departamento de Matemática e Computação (DMC) Universidade Estadual Paulista (FCT/UNESP) Presidente PrudenteDepartamento de Ciências de Computação (SCC) Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP)Departamento de Matemática e Computação (DMC) Universidade Estadual Paulista (FCT/UNESP) Presidente PrudenteUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Almeida, Carlos E. M. [UNESP]Correia, Ronaldo C. M. [UNESP]Eler, Danilo M. [UNESP]Olivete-Jr, Celso [UNESP]Garci, Rogerio E. [UNESP]Scabora, Lucas C.Spadon, Gabriel2018-12-11T17:13:54Z2018-12-11T17:13:54Z2017-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.23919/CISTI.2017.7975774Iberian Conference on Information Systems and Technologies, CISTI.2166-07352166-0727http://hdl.handle.net/11449/17502610.23919/CISTI.2017.79757742-s2.0-850270789582616135175972629Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIberian Conference on Information Systems and Technologies, CISTI0,136info:eu-repo/semantics/openAccess2024-06-19T14:32:26Zoai:repositorio.unesp.br:11449/175026Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:48:50.901072Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Predição de Vencedores em Jogos MOBA Prediction of winners in MOBA games |
title |
Predição de Vencedores em Jogos MOBA |
spellingShingle |
Predição de Vencedores em Jogos MOBA Almeida, Carlos E. M. [UNESP] Classification Data Mining Strategic Games |
title_short |
Predição de Vencedores em Jogos MOBA |
title_full |
Predição de Vencedores em Jogos MOBA |
title_fullStr |
Predição de Vencedores em Jogos MOBA |
title_full_unstemmed |
Predição de Vencedores em Jogos MOBA |
title_sort |
Predição de Vencedores em Jogos MOBA |
author |
Almeida, Carlos E. M. [UNESP] |
author_facet |
Almeida, Carlos E. M. [UNESP] Correia, Ronaldo C. M. [UNESP] Eler, Danilo M. [UNESP] Olivete-Jr, Celso [UNESP] Garci, Rogerio E. [UNESP] Scabora, Lucas C. Spadon, Gabriel |
author_role |
author |
author2 |
Correia, Ronaldo C. M. [UNESP] Eler, Danilo M. [UNESP] Olivete-Jr, Celso [UNESP] Garci, Rogerio E. [UNESP] Scabora, Lucas C. Spadon, Gabriel |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Almeida, Carlos E. M. [UNESP] Correia, Ronaldo C. M. [UNESP] Eler, Danilo M. [UNESP] Olivete-Jr, Celso [UNESP] Garci, Rogerio E. [UNESP] Scabora, Lucas C. Spadon, Gabriel |
dc.subject.por.fl_str_mv |
Classification Data Mining Strategic Games |
topic |
Classification Data Mining Strategic Games |
description |
Multiplayer Online Battle Arena (MOBA) games are very popular in the current eSport scenario, being highlighted in several competitions around the world. However, the domain of knowledge contained in these games is large, which makes it difficult to discover and predict the course of a match. The present work proposes the application of classification algorithms to determine the team with more chances to win a match. Two classifications procedures were used, one based on the composition of heroes in each team and another considering the duration of the match. The experiments were performed on data collected from 123,326 matches of Dota 2, showing that it was possible to achieve approximately 77% accuracy. The results demonstrate the effectiveness of the application when using techniques assisted by computers, and when using the methodology described in championships or other similar games that require the definition of strategies. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-11 2018-12-11T17:13:54Z 2018-12-11T17:13:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.23919/CISTI.2017.7975774 Iberian Conference on Information Systems and Technologies, CISTI. 2166-0735 2166-0727 http://hdl.handle.net/11449/175026 10.23919/CISTI.2017.7975774 2-s2.0-85027078958 2616135175972629 |
url |
http://dx.doi.org/10.23919/CISTI.2017.7975774 http://hdl.handle.net/11449/175026 |
identifier_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI. 2166-0735 2166-0727 10.23919/CISTI.2017.7975774 2-s2.0-85027078958 2616135175972629 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI 0,136 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129121664892928 |