Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.31413/nativa.v10i4.13922 http://hdl.handle.net/11449/249612 |
Resumo: | Evapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique. |
id |
UNSP_38ccb3fc5e3ddd1f454fd03c0d29ae5c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/249612 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of PaulistaModelos de machine learning aplicados na estimação da evapotranspiração de referência do Planalto Ocidental Paulistaevapotranspirationmachine learningmodelingEvapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique.Programa de Pós Graduação em Engenharia Agrícola Universidade Estadual Paulista, SPUniversidade Federal do Pará, PAPrograma de Pós Graduação em Engenharia Agrícola Universidade Estadual Paulista, SPUniversidade Estadual Paulista (UNESP)Universidade Federal do Pará (UFPA)da Silva, Maurício Bruno Prado [UNESP]de Souza, Valter Cesar [UNESP]Cremasco, Caroline Pires [UNESP]Calça, Marcus Vinícius Contes [UNESP]Dos Santos, Cícero ManoelCremasco, Camila Pires [UNESP]Gabriel Filho, Luís Roberto Almeida [UNESP]Rodrigues, Sergio Augusto [UNESP]Escobedo, João Francisco [UNESP]2023-07-29T16:04:27Z2023-07-29T16:04:27Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article506-515http://dx.doi.org/10.31413/nativa.v10i4.13922Nativa, v. 10, n. 4, p. 506-515, 2022.2318-7670http://hdl.handle.net/11449/24961210.31413/nativa.v10i4.139222-s2.0-85146999129Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporNativainfo:eu-repo/semantics/openAccess2024-04-30T14:00:15Zoai:repositorio.unesp.br:11449/249612Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:01:25.504623Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista Modelos de machine learning aplicados na estimação da evapotranspiração de referência do Planalto Ocidental Paulista |
title |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
spellingShingle |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista da Silva, Maurício Bruno Prado [UNESP] evapotranspiration machine learning modeling |
title_short |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
title_full |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
title_fullStr |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
title_full_unstemmed |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
title_sort |
Machine learning models applied in the estimation of reference evapotranspiration from the Western Plateau of Paulista |
author |
da Silva, Maurício Bruno Prado [UNESP] |
author_facet |
da Silva, Maurício Bruno Prado [UNESP] de Souza, Valter Cesar [UNESP] Cremasco, Caroline Pires [UNESP] Calça, Marcus Vinícius Contes [UNESP] Dos Santos, Cícero Manoel Cremasco, Camila Pires [UNESP] Gabriel Filho, Luís Roberto Almeida [UNESP] Rodrigues, Sergio Augusto [UNESP] Escobedo, João Francisco [UNESP] |
author_role |
author |
author2 |
de Souza, Valter Cesar [UNESP] Cremasco, Caroline Pires [UNESP] Calça, Marcus Vinícius Contes [UNESP] Dos Santos, Cícero Manoel Cremasco, Camila Pires [UNESP] Gabriel Filho, Luís Roberto Almeida [UNESP] Rodrigues, Sergio Augusto [UNESP] Escobedo, João Francisco [UNESP] |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Federal do Pará (UFPA) |
dc.contributor.author.fl_str_mv |
da Silva, Maurício Bruno Prado [UNESP] de Souza, Valter Cesar [UNESP] Cremasco, Caroline Pires [UNESP] Calça, Marcus Vinícius Contes [UNESP] Dos Santos, Cícero Manoel Cremasco, Camila Pires [UNESP] Gabriel Filho, Luís Roberto Almeida [UNESP] Rodrigues, Sergio Augusto [UNESP] Escobedo, João Francisco [UNESP] |
dc.subject.por.fl_str_mv |
evapotranspiration machine learning modeling |
topic |
evapotranspiration machine learning modeling |
description |
Evapotranspiration depends on the interaction between meteorological variables (solar radiation, air temperature, precipitation, relative humidity and wind speed) and phytosanitary conditions of agricultural crops. It is complex to build reliable evapotranspiration measurements due to the high costs of implementing micrometeorological techniques, in addition to difficulties in the operation and maintenance of the necessary equipment. The purpose of this research was to model the reference evapotranspiration through machine learning techniques in climatic data from 30 automatic weather stations in the Planalto Ocidental Paulista, State of São Paulo, Brazil, in the period 2013-2017. A comparison of the statistical performance between the techniques used was carried out, where the best performance of the EToMLP4 model (rRMSE = 0.62%), followed by EToANFIS4 (rRMSE = 0.75%), EToSVM4 (rRMSE = 1.19%) and EToGRNN4 (rRMSE = 11.05 %). Performance measures of the validation base show that the proposed models are able to estimate the reference evapotranspiration, with emphasis on the MPL technique. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-07-29T16:04:27Z 2023-07-29T16:04:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.31413/nativa.v10i4.13922 Nativa, v. 10, n. 4, p. 506-515, 2022. 2318-7670 http://hdl.handle.net/11449/249612 10.31413/nativa.v10i4.13922 2-s2.0-85146999129 |
url |
http://dx.doi.org/10.31413/nativa.v10i4.13922 http://hdl.handle.net/11449/249612 |
identifier_str_mv |
Nativa, v. 10, n. 4, p. 506-515, 2022. 2318-7670 10.31413/nativa.v10i4.13922 2-s2.0-85146999129 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Nativa |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
506-515 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128305059069952 |