A NOTE ON CARMICHAEL’S CONJECTURE

Detalhes bibliográficos
Autor(a) principal: Andrade, Antonio A.
Data de Publicação: 2022
Outros Autores: Cundari, Guilherme Z.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.12732/ijam.v35i3.3
http://hdl.handle.net/11449/240664
Resumo: Euler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n).
id UNSP_39adb4f46ea25628e3a72b19cda2f031
oai_identifier_str oai:repositorio.unesp.br:11449/240664
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A NOTE ON CARMICHAEL’S CONJECTURECarmichael’s conjectureEuler functionPrime numberEuler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n).Department of Mathematics S˜ao Paulo State University, SP2023-03-01T20:27:28Z2023-03-01T20:27:28Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article393-396http://dx.doi.org/10.12732/ijam.v35i3.3International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022.1314-80601311-1728http://hdl.handle.net/11449/24066410.12732/ijam.v35i3.32-s2.0-85136128090Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied MathematicsAndrade, Antonio A.Cundari, Guilherme Z.info:eu-repo/semantics/openAccess2023-03-01T20:27:29Zoai:repositorio.unesp.br:11449/240664Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:05:53.762124Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A NOTE ON CARMICHAEL’S CONJECTURE
title A NOTE ON CARMICHAEL’S CONJECTURE
spellingShingle A NOTE ON CARMICHAEL’S CONJECTURE
Andrade, Antonio A.
Carmichael’s conjecture
Euler function
Prime number
title_short A NOTE ON CARMICHAEL’S CONJECTURE
title_full A NOTE ON CARMICHAEL’S CONJECTURE
title_fullStr A NOTE ON CARMICHAEL’S CONJECTURE
title_full_unstemmed A NOTE ON CARMICHAEL’S CONJECTURE
title_sort A NOTE ON CARMICHAEL’S CONJECTURE
author Andrade, Antonio A.
author_facet Andrade, Antonio A.
Cundari, Guilherme Z.
author_role author
author2 Cundari, Guilherme Z.
author2_role author
dc.contributor.author.fl_str_mv Andrade, Antonio A.
Cundari, Guilherme Z.
dc.subject.por.fl_str_mv Carmichael’s conjecture
Euler function
Prime number
topic Carmichael’s conjecture
Euler function
Prime number
description Euler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n).
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-01T20:27:28Z
2023-03-01T20:27:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.12732/ijam.v35i3.3
International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022.
1314-8060
1311-1728
http://hdl.handle.net/11449/240664
10.12732/ijam.v35i3.3
2-s2.0-85136128090
url http://dx.doi.org/10.12732/ijam.v35i3.3
http://hdl.handle.net/11449/240664
identifier_str_mv International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022.
1314-8060
1311-1728
10.12732/ijam.v35i3.3
2-s2.0-85136128090
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 393-396
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128460331155456