A NOTE ON CARMICHAEL’S CONJECTURE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.12732/ijam.v35i3.3 http://hdl.handle.net/11449/240664 |
Resumo: | Euler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n). |
id |
UNSP_39adb4f46ea25628e3a72b19cda2f031 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/240664 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A NOTE ON CARMICHAEL’S CONJECTURECarmichael’s conjectureEuler functionPrime numberEuler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n).Department of Mathematics S˜ao Paulo State University, SP2023-03-01T20:27:28Z2023-03-01T20:27:28Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article393-396http://dx.doi.org/10.12732/ijam.v35i3.3International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022.1314-80601311-1728http://hdl.handle.net/11449/24066410.12732/ijam.v35i3.32-s2.0-85136128090Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied MathematicsAndrade, Antonio A.Cundari, Guilherme Z.info:eu-repo/semantics/openAccess2023-03-01T20:27:29Zoai:repositorio.unesp.br:11449/240664Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:05:53.762124Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A NOTE ON CARMICHAEL’S CONJECTURE |
title |
A NOTE ON CARMICHAEL’S CONJECTURE |
spellingShingle |
A NOTE ON CARMICHAEL’S CONJECTURE Andrade, Antonio A. Carmichael’s conjecture Euler function Prime number |
title_short |
A NOTE ON CARMICHAEL’S CONJECTURE |
title_full |
A NOTE ON CARMICHAEL’S CONJECTURE |
title_fullStr |
A NOTE ON CARMICHAEL’S CONJECTURE |
title_full_unstemmed |
A NOTE ON CARMICHAEL’S CONJECTURE |
title_sort |
A NOTE ON CARMICHAEL’S CONJECTURE |
author |
Andrade, Antonio A. |
author_facet |
Andrade, Antonio A. Cundari, Guilherme Z. |
author_role |
author |
author2 |
Cundari, Guilherme Z. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Andrade, Antonio A. Cundari, Guilherme Z. |
dc.subject.por.fl_str_mv |
Carmichael’s conjecture Euler function Prime number |
topic |
Carmichael’s conjecture Euler function Prime number |
description |
Euler’s totient function (also known as Euler’s '-function or just Euler’s function) was introduced by Leonhard Euler (1707-1783) in 1760, motivated by a problem proposed by Pierre of Fermat (1607-1665). Given a positive integer n, in this work, we present new results about the existence of a positive integer m such that φ(m) = φ(n). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-03-01T20:27:28Z 2023-03-01T20:27:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.12732/ijam.v35i3.3 International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022. 1314-8060 1311-1728 http://hdl.handle.net/11449/240664 10.12732/ijam.v35i3.3 2-s2.0-85136128090 |
url |
http://dx.doi.org/10.12732/ijam.v35i3.3 http://hdl.handle.net/11449/240664 |
identifier_str_mv |
International Journal of Applied Mathematics, v. 35, n. 3, p. 393-396, 2022. 1314-8060 1311-1728 10.12732/ijam.v35i3.3 2-s2.0-85136128090 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
393-396 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128460331155456 |