Electrical consumers data clustering through optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISAP.2011.6082217 http://hdl.handle.net/11449/73077 |
Resumo: | Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE. |
id |
UNSP_6c5f4eca4a6c2f5c692722ae3997d258 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73077 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electrical consumers data clustering through optimum-path forestClusteringNon-technical LossesOptimum-Path ForestPattern RecognitionClustering techniquesData clusteringData setsElectric power companyNon-technical lossSpecific profileClustering algorithmsCrimeData processingElectric utilitiesIndustryIntelligent systemsPattern recognitionPower transmissionForestryAlgorithmsArtificial IntelligenceData ProcessingElectric Power TransmissionElectricityLossesNon-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.Department of Electrical Engineering University of São Paulo, São Paulo, São PauloDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, São PauloDepartment of Computing UNESP - Univ. Estadual Paulista, Bauru, São PauloUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Ramos, Caio C. O.Souza, André N.Nakamura, Rodrigo Y. M. [UNESP]Papa, João Paulo [UNESP]2014-05-27T11:26:20Z2014-05-27T11:26:20Z2011-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISAP.2011.60822172011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011.http://hdl.handle.net/11449/7307710.1109/ISAP.2011.60822172-s2.0-836552116739039182932747194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/73077Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:53:15.041413Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electrical consumers data clustering through optimum-path forest |
title |
Electrical consumers data clustering through optimum-path forest |
spellingShingle |
Electrical consumers data clustering through optimum-path forest Ramos, Caio C. O. Clustering Non-technical Losses Optimum-Path Forest Pattern Recognition Clustering techniques Data clustering Data sets Electric power company Non-technical loss Specific profile Clustering algorithms Crime Data processing Electric utilities Industry Intelligent systems Pattern recognition Power transmission Forestry Algorithms Artificial Intelligence Data Processing Electric Power Transmission Electricity Losses |
title_short |
Electrical consumers data clustering through optimum-path forest |
title_full |
Electrical consumers data clustering through optimum-path forest |
title_fullStr |
Electrical consumers data clustering through optimum-path forest |
title_full_unstemmed |
Electrical consumers data clustering through optimum-path forest |
title_sort |
Electrical consumers data clustering through optimum-path forest |
author |
Ramos, Caio C. O. |
author_facet |
Ramos, Caio C. O. Souza, André N. Nakamura, Rodrigo Y. M. [UNESP] Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Souza, André N. Nakamura, Rodrigo Y. M. [UNESP] Papa, João Paulo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ramos, Caio C. O. Souza, André N. Nakamura, Rodrigo Y. M. [UNESP] Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Clustering Non-technical Losses Optimum-Path Forest Pattern Recognition Clustering techniques Data clustering Data sets Electric power company Non-technical loss Specific profile Clustering algorithms Crime Data processing Electric utilities Industry Intelligent systems Pattern recognition Power transmission Forestry Algorithms Artificial Intelligence Data Processing Electric Power Transmission Electricity Losses |
topic |
Clustering Non-technical Losses Optimum-Path Forest Pattern Recognition Clustering techniques Data clustering Data sets Electric power company Non-technical loss Specific profile Clustering algorithms Crime Data processing Electric utilities Industry Intelligent systems Pattern recognition Power transmission Forestry Algorithms Artificial Intelligence Data Processing Electric Power Transmission Electricity Losses |
description |
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-21 2014-05-27T11:26:20Z 2014-05-27T11:26:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISAP.2011.6082217 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. http://hdl.handle.net/11449/73077 10.1109/ISAP.2011.6082217 2-s2.0-83655211673 9039182932747194 |
url |
http://dx.doi.org/10.1109/ISAP.2011.6082217 http://hdl.handle.net/11449/73077 |
identifier_str_mv |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. 10.1109/ISAP.2011.6082217 2-s2.0-83655211673 9039182932747194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129260890619904 |