Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions

Detalhes bibliográficos
Autor(a) principal: Cerna Ñahuis, Selene Leya
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/190740
Resumo: Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters.
id UNSP_3a8445910f4386dab1b809fa31f4294d
oai_identifier_str oai:repositorio.unesp.br:11449/190740
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade IiterventionsAnálise comparativa das técnicas XGBoost, MLP e LSTM para o problema de prever intervenções de bombeirosFirefightersPredictionXGBoostLong short-term memoryMulti-layer perceptronMutual information regressionPrincipal component analysisBombeirosPrevisãoMany environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters.Muitos fatores ambientais, econômicos e sociais estão levando as brigadas de incêndio a serem cada vez mais solicitadas e, como consequência, enfrentam um número cada vez maior de intervenções, na maioria das vezes com recursos constantes. Por outro lado, essas intervenções estão diretamente relacionadas à atividade humana, o que é previsível: os afogamentos em piscina ocorrem no verão, enquanto os acidentes de tráfego, devido a tempestades de gelo, ocorrem no inverno. Uma solução para melhorar a resposta dos bombeiros com recursos constantes é prever sua carga de trabalho, isto é, seu número de intervenções por hora, com base em variáveis explicativas que condicionam a atividade humana. O presente trabalho visa desenvolver três modelos que são comparados para determinar se eles podem prever a carga de respostas dos bombeiros de uma maneira razoável. As ferramentas escolhidas são as mais representativas de suas respectivas categorias em Machine Learning, como o XGBoost que tem como núcleo uma árvore de decisão, um método clássico como o Multi-Layer Perceptron e um algoritmo mais avançado como Long Short-Term Memory ambos com neurônios como base. Todo o processo é detalhado, desde a coleta de dados até a obtenção de previsões. Os resultados obtidos demonstram uma previsão de qualidade razoável que pode ser melhorada por técnicas de ciência de dados, como seleção de características e ajuste de hiperparâmetros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 001Universidade Estadual Paulista (Unesp)Lotufo, Anna Diva Plasencia [UNESP]Guyeux, ChristopheUniversidade Estadual Paulista (Unesp)Cerna Ñahuis, Selene Leya2019-10-16T14:49:59Z2019-10-16T14:49:59Z2019-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/19074000092606433004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:42:56Zoai:repositorio.unesp.br:11449/190740Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:42:56Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
Análise comparativa das técnicas XGBoost, MLP e LSTM para o problema de prever intervenções de bombeiros
title Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
spellingShingle Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
Cerna Ñahuis, Selene Leya
Firefighters
Prediction
XGBoost
Long short-term memory
Multi-layer perceptron
Mutual information regression
Principal component analysis
Bombeiros
Previsão
title_short Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
title_full Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
title_fullStr Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
title_full_unstemmed Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
title_sort Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
author Cerna Ñahuis, Selene Leya
author_facet Cerna Ñahuis, Selene Leya
author_role author
dc.contributor.none.fl_str_mv Lotufo, Anna Diva Plasencia [UNESP]
Guyeux, Christophe
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Cerna Ñahuis, Selene Leya
dc.subject.por.fl_str_mv Firefighters
Prediction
XGBoost
Long short-term memory
Multi-layer perceptron
Mutual information regression
Principal component analysis
Bombeiros
Previsão
topic Firefighters
Prediction
XGBoost
Long short-term memory
Multi-layer perceptron
Mutual information regression
Principal component analysis
Bombeiros
Previsão
description Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-16T14:49:59Z
2019-10-16T14:49:59Z
2019-08-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/190740
000926064
33004099080P0
url http://hdl.handle.net/11449/190740
identifier_str_mv 000926064
33004099080P0
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128206615609344