Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/190740 |
Resumo: | Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters. |
id |
UNSP_3a8445910f4386dab1b809fa31f4294d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/190740 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade IiterventionsAnálise comparativa das técnicas XGBoost, MLP e LSTM para o problema de prever intervenções de bombeirosFirefightersPredictionXGBoostLong short-term memoryMulti-layer perceptronMutual information regressionPrincipal component analysisBombeirosPrevisãoMany environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters.Muitos fatores ambientais, econômicos e sociais estão levando as brigadas de incêndio a serem cada vez mais solicitadas e, como consequência, enfrentam um número cada vez maior de intervenções, na maioria das vezes com recursos constantes. Por outro lado, essas intervenções estão diretamente relacionadas à atividade humana, o que é previsível: os afogamentos em piscina ocorrem no verão, enquanto os acidentes de tráfego, devido a tempestades de gelo, ocorrem no inverno. Uma solução para melhorar a resposta dos bombeiros com recursos constantes é prever sua carga de trabalho, isto é, seu número de intervenções por hora, com base em variáveis explicativas que condicionam a atividade humana. O presente trabalho visa desenvolver três modelos que são comparados para determinar se eles podem prever a carga de respostas dos bombeiros de uma maneira razoável. As ferramentas escolhidas são as mais representativas de suas respectivas categorias em Machine Learning, como o XGBoost que tem como núcleo uma árvore de decisão, um método clássico como o Multi-Layer Perceptron e um algoritmo mais avançado como Long Short-Term Memory ambos com neurônios como base. Todo o processo é detalhado, desde a coleta de dados até a obtenção de previsões. Os resultados obtidos demonstram uma previsão de qualidade razoável que pode ser melhorada por técnicas de ciência de dados, como seleção de características e ajuste de hiperparâmetros.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 001Universidade Estadual Paulista (Unesp)Lotufo, Anna Diva Plasencia [UNESP]Guyeux, ChristopheUniversidade Estadual Paulista (Unesp)Cerna Ñahuis, Selene Leya2019-10-16T14:49:59Z2019-10-16T14:49:59Z2019-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/19074000092606433004099080P0enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:42:56Zoai:repositorio.unesp.br:11449/190740Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:42:56Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions Análise comparativa das técnicas XGBoost, MLP e LSTM para o problema de prever intervenções de bombeiros |
title |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
spellingShingle |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions Cerna Ñahuis, Selene Leya Firefighters Prediction XGBoost Long short-term memory Multi-layer perceptron Mutual information regression Principal component analysis Bombeiros Previsão |
title_short |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
title_full |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
title_fullStr |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
title_full_unstemmed |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
title_sort |
Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions |
author |
Cerna Ñahuis, Selene Leya |
author_facet |
Cerna Ñahuis, Selene Leya |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lotufo, Anna Diva Plasencia [UNESP] Guyeux, Christophe Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Cerna Ñahuis, Selene Leya |
dc.subject.por.fl_str_mv |
Firefighters Prediction XGBoost Long short-term memory Multi-layer perceptron Mutual information regression Principal component analysis Bombeiros Previsão |
topic |
Firefighters Prediction XGBoost Long short-term memory Multi-layer perceptron Mutual information regression Principal component analysis Bombeiros Previsão |
description |
Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-16T14:49:59Z 2019-10-16T14:49:59Z 2019-08-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/190740 000926064 33004099080P0 |
url |
http://hdl.handle.net/11449/190740 |
identifier_str_mv |
000926064 33004099080P0 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128206615609344 |