On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1017/prm.2022.86 http://hdl.handle.net/11449/245555 |
Resumo: | In this work, we study a quasilinear elliptic problem involving the 1-Laplacian operator, with a discontinuous, superlinear and subcritical nonlinearity involving the Heaviside function H(middot - beta). Our approach is based on an analysis of the associated p-Laplacian problem, followed by a thorough analysis of the asymptotic behaviour or such solutions as p -> 1(+). We study also the asymptotic behaviour of the solutions, as beta -> 0(+) and we prove that it converges to a solution of the original problem, without the discontinuity in the nonlinearity. |
id |
UNSP_ffb8df5a48ce290214c503015d91968f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245555 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity1-Laplacian operatorspace of functions of bounded variationdiscontinuous nonlinearitiesIn this work, we study a quasilinear elliptic problem involving the 1-Laplacian operator, with a discontinuous, superlinear and subcritical nonlinearity involving the Heaviside function H(middot - beta). Our approach is based on an analysis of the associated p-Laplacian problem, followed by a thorough analysis of the asymptotic behaviour or such solutions as p -> 1(+). We study also the asymptotic behaviour of the solutions, as beta -> 0(+) and we prove that it converges to a solution of the original problem, without the discontinuity in the nonlinearity.Funda��o de Amparo � Pesquisa do Estado de S�o Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cient�fico e Tecnol�gico (CNPq)FAPDF, BrazilUniv Estadual Paulista Unesp, Dept Matemat & Computac, BR-19060900 Presidente Prudente, SP, BrazilUniv Fed Para, Fac Matemat, BR-66075110 Belem, PA, BrazilUniv Estadual Paulista Unesp, Dept Matemat & Computac, BR-19060900 Presidente Prudente, SP, BrazilFAPESP: 2021/04158-4FAPESP: 2021/10791-1CNPq: 303788/2018-6CNPq: 313766/2021-5Cambridge Univ PressUniversidade Estadual Paulista (UNESP)Univ Fed ParaPimenta, Marcos T. O. [UNESP]Santos, Gelson Conceicao G. dosSantos Junior, Joao R.2023-07-29T11:58:23Z2023-07-29T11:58:23Z2022-12-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article27http://dx.doi.org/10.1017/prm.2022.86Proceedings of the Royal Society of Edinburgh Section A-mathematics. Cambridge: Cambridge Univ Press, 27 p., 2022.0308-2105http://hdl.handle.net/11449/24555510.1017/prm.2022.86WOS:000904842100001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of The Royal Society Of Edinburgh Section A-mathematicsinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/245555Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:35:07.984601Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
title |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
spellingShingle |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity Pimenta, Marcos T. O. [UNESP] 1-Laplacian operator space of functions of bounded variation discontinuous nonlinearities |
title_short |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
title_full |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
title_fullStr |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
title_full_unstemmed |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
title_sort |
On a quasilinear elliptic problem involving the 1-Laplacian operator and a discontinuous nonlinearity |
author |
Pimenta, Marcos T. O. [UNESP] |
author_facet |
Pimenta, Marcos T. O. [UNESP] Santos, Gelson Conceicao G. dos Santos Junior, Joao R. |
author_role |
author |
author2 |
Santos, Gelson Conceicao G. dos Santos Junior, Joao R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Univ Fed Para |
dc.contributor.author.fl_str_mv |
Pimenta, Marcos T. O. [UNESP] Santos, Gelson Conceicao G. dos Santos Junior, Joao R. |
dc.subject.por.fl_str_mv |
1-Laplacian operator space of functions of bounded variation discontinuous nonlinearities |
topic |
1-Laplacian operator space of functions of bounded variation discontinuous nonlinearities |
description |
In this work, we study a quasilinear elliptic problem involving the 1-Laplacian operator, with a discontinuous, superlinear and subcritical nonlinearity involving the Heaviside function H(middot - beta). Our approach is based on an analysis of the associated p-Laplacian problem, followed by a thorough analysis of the asymptotic behaviour or such solutions as p -> 1(+). We study also the asymptotic behaviour of the solutions, as beta -> 0(+) and we prove that it converges to a solution of the original problem, without the discontinuity in the nonlinearity. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-28 2023-07-29T11:58:23Z 2023-07-29T11:58:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1017/prm.2022.86 Proceedings of the Royal Society of Edinburgh Section A-mathematics. Cambridge: Cambridge Univ Press, 27 p., 2022. 0308-2105 http://hdl.handle.net/11449/245555 10.1017/prm.2022.86 WOS:000904842100001 |
url |
http://dx.doi.org/10.1017/prm.2022.86 http://hdl.handle.net/11449/245555 |
identifier_str_mv |
Proceedings of the Royal Society of Edinburgh Section A-mathematics. Cambridge: Cambridge Univ Press, 27 p., 2022. 0308-2105 10.1017/prm.2022.86 WOS:000904842100001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of The Royal Society Of Edinburgh Section A-mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
27 |
dc.publisher.none.fl_str_mv |
Cambridge Univ Press |
publisher.none.fl_str_mv |
Cambridge Univ Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129089982169088 |