Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IWSSIP55020.2022.9854438 http://hdl.handle.net/11449/241596 |
Resumo: | In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named HM. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination HM and SampEnMF. The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis. |
id |
UNSP_3b82a37272422267073d18b329587f7d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/241596 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal imagescolorectal imagescombinationmultidimensionalmultiscaleshannon entropyIn this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named HM. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination HM and SampEnMF. The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis.Sao Paulo State University (UNESP) Department of Computer Science and Statistics (DCCE)Federal University of Uberlândia (UFU) Faculty of Computer Science (FACOM)Science and Technology Institute Federal University of São Paulo (UNIFESP)Sao Paulo State University (UNESP) Department of Computer Science and Statistics (DCCE)Universidade Estadual Paulista (UNESP)Universidade Federal de Uberlândia (UFU)Universidade de São Paulo (USP)Santos, Luiz Fernando Segato Dos [UNESP]Rozendo, Guilherme Botazzo [UNESP]Nascimento, Marcelo Zanchetta DoTosta, Thaina Aparecida AzevedoLongo, Leonardo Henrique Da Costa [UNESP]Neves, Leandro Alves [UNESP]2023-03-01T21:12:05Z2023-03-01T21:12:05Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IWSSIP55020.2022.9854438International Conference on Systems, Signals, and Image Processing, v. 2022-June.2157-87022157-8672http://hdl.handle.net/11449/24159610.1109/IWSSIP55020.2022.98544382-s2.0-85137169801Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Systems, Signals, and Image Processinginfo:eu-repo/semantics/openAccess2023-03-01T21:12:05Zoai:repositorio.unesp.br:11449/241596Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:12.539130Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
title |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
spellingShingle |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images Santos, Luiz Fernando Segato Dos [UNESP] colorectal images combination multidimensional multiscale shannon entropy |
title_short |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
title_full |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
title_fullStr |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
title_full_unstemmed |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
title_sort |
Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images |
author |
Santos, Luiz Fernando Segato Dos [UNESP] |
author_facet |
Santos, Luiz Fernando Segato Dos [UNESP] Rozendo, Guilherme Botazzo [UNESP] Nascimento, Marcelo Zanchetta Do Tosta, Thaina Aparecida Azevedo Longo, Leonardo Henrique Da Costa [UNESP] Neves, Leandro Alves [UNESP] |
author_role |
author |
author2 |
Rozendo, Guilherme Botazzo [UNESP] Nascimento, Marcelo Zanchetta Do Tosta, Thaina Aparecida Azevedo Longo, Leonardo Henrique Da Costa [UNESP] Neves, Leandro Alves [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Federal de Uberlândia (UFU) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Santos, Luiz Fernando Segato Dos [UNESP] Rozendo, Guilherme Botazzo [UNESP] Nascimento, Marcelo Zanchetta Do Tosta, Thaina Aparecida Azevedo Longo, Leonardo Henrique Da Costa [UNESP] Neves, Leandro Alves [UNESP] |
dc.subject.por.fl_str_mv |
colorectal images combination multidimensional multiscale shannon entropy |
topic |
colorectal images combination multidimensional multiscale shannon entropy |
description |
In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named HM. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination HM and SampEnMF. The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-03-01T21:12:05Z 2023-03-01T21:12:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IWSSIP55020.2022.9854438 International Conference on Systems, Signals, and Image Processing, v. 2022-June. 2157-8702 2157-8672 http://hdl.handle.net/11449/241596 10.1109/IWSSIP55020.2022.9854438 2-s2.0-85137169801 |
url |
http://dx.doi.org/10.1109/IWSSIP55020.2022.9854438 http://hdl.handle.net/11449/241596 |
identifier_str_mv |
International Conference on Systems, Signals, and Image Processing, v. 2022-June. 2157-8702 2157-8672 10.1109/IWSSIP55020.2022.9854438 2-s2.0-85137169801 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Conference on Systems, Signals, and Image Processing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129203938263040 |