LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/184129 |
Resumo: | Satellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature. |
id |
UNSP_3ba841b22ba65678390d555894517357 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184129 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINESLand-use classificationFinite Element MachinesRemote SensingSatellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Sao Paulo State Univ, UNESP, Dept Comp, Sao Paulo, BrazilFac Southwest Paulista, Dept Hlth, Sao Paulo, BrazilUniv Jose do Rosario Vellano, Inst Nat Sci, Alfenas, BrazilSao Paulo State Univ, UNESP, Dept Comp, Sao Paulo, BrazilCNPq: 306166/2014-3FAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6FUNDUNESP: 2597.2017IeeeUniversidade Estadual Paulista (Unesp)Fac Southwest PaulistaUniv Jose do Rosario VellanoPereira, D. R. [UNESP]Papa, J. P. [UNESP]Papa, L. P.Pisani, R. J.IEEE2019-10-03T18:20:08Z2019-10-03T18:20:08Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject7316-7319Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 7316-7319, 2018.2153-6996http://hdl.handle.net/11449/184129WOS:000451039807004Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIgarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposiuminfo:eu-repo/semantics/openAccess2021-10-22T21:54:13Zoai:repositorio.unesp.br:11449/184129Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:31:36.957730Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
title |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
spellingShingle |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES Pereira, D. R. [UNESP] Land-use classification Finite Element Machines Remote Sensing |
title_short |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
title_full |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
title_fullStr |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
title_full_unstemmed |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
title_sort |
LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES |
author |
Pereira, D. R. [UNESP] |
author_facet |
Pereira, D. R. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. IEEE |
author_role |
author |
author2 |
Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. IEEE |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Fac Southwest Paulista Univ Jose do Rosario Vellano |
dc.contributor.author.fl_str_mv |
Pereira, D. R. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. IEEE |
dc.subject.por.fl_str_mv |
Land-use classification Finite Element Machines Remote Sensing |
topic |
Land-use classification Finite Element Machines Remote Sensing |
description |
Satellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-03T18:20:08Z 2019-10-03T18:20:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 7316-7319, 2018. 2153-6996 http://hdl.handle.net/11449/184129 WOS:000451039807004 |
identifier_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 7316-7319, 2018. 2153-6996 WOS:000451039807004 |
url |
http://hdl.handle.net/11449/184129 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
7316-7319 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128373816295424 |