Land-use classification using Finite Element Machines
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IGARSS.2018.8519252 http://hdl.handle.net/11449/187546 |
Resumo: | Satellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature. |
id |
UNSP_cd22698e4d2463a154b79b890f06b58b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/187546 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Land-use classification using Finite Element MachinesFinite element machinesLand-use classificationRemote sensingSatellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature.Department of Computing São Paulo State University - UNESPDepartment of Health Faculty Southwest PaulistaInstitute of Natural Sciences University of AlfenasDepartment of Computing São Paulo State University - UNESPUniversidade Estadual Paulista (Unesp)Faculty Southwest PaulistaUniversity of AlfenasPereira, D. R. [UNESP]Papa, J. P. [UNESP]Papa, L. P.Pisani, R. J.2019-10-06T15:39:44Z2019-10-06T15:39:44Z2018-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject7316-7319http://dx.doi.org/10.1109/IGARSS.2018.8519252International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 7316-7319.http://hdl.handle.net/11449/18754610.1109/IGARSS.2018.85192522-s2.0-85064177102Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Geoscience and Remote Sensing Symposium (IGARSS)info:eu-repo/semantics/openAccess2021-10-23T19:28:26Zoai:repositorio.unesp.br:11449/187546Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:46:03.232095Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Land-use classification using Finite Element Machines |
title |
Land-use classification using Finite Element Machines |
spellingShingle |
Land-use classification using Finite Element Machines Pereira, D. R. [UNESP] Finite element machines Land-use classification Remote sensing |
title_short |
Land-use classification using Finite Element Machines |
title_full |
Land-use classification using Finite Element Machines |
title_fullStr |
Land-use classification using Finite Element Machines |
title_full_unstemmed |
Land-use classification using Finite Element Machines |
title_sort |
Land-use classification using Finite Element Machines |
author |
Pereira, D. R. [UNESP] |
author_facet |
Pereira, D. R. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. |
author_role |
author |
author2 |
Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Faculty Southwest Paulista University of Alfenas |
dc.contributor.author.fl_str_mv |
Pereira, D. R. [UNESP] Papa, J. P. [UNESP] Papa, L. P. Pisani, R. J. |
dc.subject.por.fl_str_mv |
Finite element machines Land-use classification Remote sensing |
topic |
Finite element machines Land-use classification Remote sensing |
description |
Satellite images have been used in a number of applications, both in the academy and in the industry. One critical purpose concerns the land-use classification, which aims at automatically identifying different land-use applications, which range from economy and environmental monitoring to resources planning. In this paper, we introduce a new machine learning technique called Finite Element Machines (FEMa) in the context of land-use classification using satellite images. We show that FEMa can obtain results that are comparable to some state-of-the-art techniques in the literature. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-31 2019-10-06T15:39:44Z 2019-10-06T15:39:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IGARSS.2018.8519252 International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 7316-7319. http://hdl.handle.net/11449/187546 10.1109/IGARSS.2018.8519252 2-s2.0-85064177102 |
url |
http://dx.doi.org/10.1109/IGARSS.2018.8519252 http://hdl.handle.net/11449/187546 |
identifier_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 7316-7319. 10.1109/IGARSS.2018.8519252 2-s2.0-85064177102 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
7316-7319 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129245269983232 |