Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/218875 |
Resumo: | The Domain Name System (DNS) protocol provides the mapping between hostnames and Internet Protocol addresses and vice versa. However, attackers use the DNS structure to register malicious domains to engage in malicious activities. One way to mitigate these domains is to use blocklists, but there is considerable time in human detection and insertion into lists. Thus, there are works aimed at detecting domains in an automated way applying machine learning techniques. Given this scenario, the present work presents an analysis of blocklists to identify patterns in malicious domains, where it was concluded that Top Level Domains might be associated with the maliciousness of a domain. After that, a system overview for the multiclass classification of malicious domains using passive DNS is proposed. The system has an exclusive character, because it is the first to use a multiclass approach to indicate the threat present in the malicious domain, and yet, it uses XGBoost and techniques to balance the data. |
id |
UNSP_3f882050338a0172011dfd6bd195f705 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/218875 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)Domain Name SystemPassive DNSMalicious DomainXGBoostMulticlass ClassificationThe Domain Name System (DNS) protocol provides the mapping between hostnames and Internet Protocol addresses and vice versa. However, attackers use the DNS structure to register malicious domains to engage in malicious activities. One way to mitigate these domains is to use blocklists, but there is considerable time in human detection and insertion into lists. Thus, there are works aimed at detecting domains in an automated way applying machine learning techniques. Given this scenario, the present work presents an analysis of blocklists to identify patterns in malicious domains, where it was concluded that Top Level Domains might be associated with the maliciousness of a domain. After that, a system overview for the multiclass classification of malicious domains using passive DNS is proposed. The system has an exclusive character, because it is the first to use a multiclass approach to indicate the threat present in the malicious domain, and yet, it uses XGBoost and techniques to balance the data.Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Sao Paulo State Univ UNESP, Sao Paulo, BrazilBrazilian Network Informat Ctr NICBR, Sao Paulo, BrazilSao Paulo State Univ UNESP, Sao Paulo, BrazilFUNDUNESP: 2764/2018IeeeUniversidade Estadual Paulista (UNESP)Brazilian Network Informat Ctr NICBRSilva, Leandro Marcos da [UNESP]Silveira, Marcos Rogerio [UNESP]Cansian, Adriano Mauro [UNESP]Kobayashi, Hugo KojiGkoulalasDivanis, A.Marchetti, M.Avresky, D. R.2022-04-28T17:30:19Z2022-04-28T17:30:19Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject32020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 3 p., 2020.2643-7910http://hdl.handle.net/11449/218875WOS:000661912700046Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee 19th International Symposium On Network Computing And Applications (nca)info:eu-repo/semantics/openAccess2024-06-28T13:55:18Zoai:repositorio.unesp.br:11449/218875Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:35:22.726045Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
title |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
spellingShingle |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) Silva, Leandro Marcos da [UNESP] Domain Name System Passive DNS Malicious Domain XGBoost Multiclass Classification |
title_short |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
title_full |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
title_fullStr |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
title_full_unstemmed |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
title_sort |
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress) |
author |
Silva, Leandro Marcos da [UNESP] |
author_facet |
Silva, Leandro Marcos da [UNESP] Silveira, Marcos Rogerio [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
author_role |
author |
author2 |
Silveira, Marcos Rogerio [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Brazilian Network Informat Ctr NICBR |
dc.contributor.author.fl_str_mv |
Silva, Leandro Marcos da [UNESP] Silveira, Marcos Rogerio [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
dc.subject.por.fl_str_mv |
Domain Name System Passive DNS Malicious Domain XGBoost Multiclass Classification |
topic |
Domain Name System Passive DNS Malicious Domain XGBoost Multiclass Classification |
description |
The Domain Name System (DNS) protocol provides the mapping between hostnames and Internet Protocol addresses and vice versa. However, attackers use the DNS structure to register malicious domains to engage in malicious activities. One way to mitigate these domains is to use blocklists, but there is considerable time in human detection and insertion into lists. Thus, there are works aimed at detecting domains in an automated way applying machine learning techniques. Given this scenario, the present work presents an analysis of blocklists to identify patterns in malicious domains, where it was concluded that Top Level Domains might be associated with the maliciousness of a domain. After that, a system overview for the multiclass classification of malicious domains using passive DNS is proposed. The system has an exclusive character, because it is the first to use a multiclass approach to indicate the threat present in the malicious domain, and yet, it uses XGBoost and techniques to balance the data. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-04-28T17:30:19Z 2022-04-28T17:30:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 3 p., 2020. 2643-7910 http://hdl.handle.net/11449/218875 WOS:000661912700046 |
identifier_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 3 p., 2020. 2643-7910 WOS:000661912700046 |
url |
http://hdl.handle.net/11449/218875 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128537447628800 |