XGBoost Applied to Identify Malicious Domains Using Passive DNS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/218874 |
Resumo: | The Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763. |
id |
UNSP_eab6a193a57a2b6130b0299a6520dd2f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/218874 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
XGBoost Applied to Identify Malicious Domains Using Passive DNSDomain Name Systemmalicious domainpassive DNSmachine learningThe Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763.Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Univ Estadual Paulista UNESP, Sao Paulo, BrazilBrazilian Network Informat Ctr NICBR, Sao Paulo, BrazilUniv Estadual Paulista UNESP, Sao Paulo, BrazilFUNDUNESP: 2764/2018IeeeUniversidade Estadual Paulista (UNESP)Brazilian Network Informat Ctr NICBRSilveira, Marcos Rogerio [UNESP]Silva, Leandro Marcos da [UNESP]Cansian, Adriano Mauro [UNESP]Kobayashi, Hugo KojiGkoulalasDivanis, A.Marchetti, M.Avresky, D. R.2022-04-28T17:30:19Z2022-04-28T17:30:19Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject42020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020.2643-7910http://hdl.handle.net/11449/218874WOS:000661912700045Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Ieee 19th International Symposium On Network Computing And Applications (nca)info:eu-repo/semantics/openAccess2024-06-28T13:55:21Zoai:repositorio.unesp.br:11449/218874Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:52:29.214983Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
title |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
spellingShingle |
XGBoost Applied to Identify Malicious Domains Using Passive DNS Silveira, Marcos Rogerio [UNESP] Domain Name System malicious domain passive DNS machine learning |
title_short |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
title_full |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
title_fullStr |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
title_full_unstemmed |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
title_sort |
XGBoost Applied to Identify Malicious Domains Using Passive DNS |
author |
Silveira, Marcos Rogerio [UNESP] |
author_facet |
Silveira, Marcos Rogerio [UNESP] Silva, Leandro Marcos da [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
author_role |
author |
author2 |
Silva, Leandro Marcos da [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Brazilian Network Informat Ctr NICBR |
dc.contributor.author.fl_str_mv |
Silveira, Marcos Rogerio [UNESP] Silva, Leandro Marcos da [UNESP] Cansian, Adriano Mauro [UNESP] Kobayashi, Hugo Koji GkoulalasDivanis, A. Marchetti, M. Avresky, D. R. |
dc.subject.por.fl_str_mv |
Domain Name System malicious domain passive DNS machine learning |
topic |
Domain Name System malicious domain passive DNS machine learning |
description |
The Domain Name System (DNS) is an essential component for the Internet, as its main function is to map the domain name to Internet Protocol addresses, in which the hosts respond. Because of its importance, attackers use this tool for malicious purposes such as spreading malware, botnets, fast-flux domains, and Domain Generation Algorithms (DGAs). In this paper, we present an approach to automatically detect malicious domains using passive DNS, using the supervised machine learning algorithm Extreme Gradient Boosting (XGBoost). We use 12 features extracted exclusively from DNS traffic. The model's evaluation proved its effectiveness with an average AUC of 0.9763. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-04-28T17:30:19Z 2022-04-28T17:30:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020. 2643-7910 http://hdl.handle.net/11449/218874 WOS:000661912700045 |
identifier_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 4 p., 2020. 2643-7910 WOS:000661912700045 |
url |
http://hdl.handle.net/11449/218874 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2020 Ieee 19th International Symposium On Network Computing And Applications (nca) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
4 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129560758190080 |