The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization

Detalhes bibliográficos
Autor(a) principal: Monticeli, Francisco M. [UNESP]
Data de Publicação: 2022
Outros Autores: Voorwald, Herman Jacobus Cornelis [UNESP], Cioffi, Maria Odila Hilário [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.compstruct.2022.115291
http://hdl.handle.net/11449/234067
Resumo: The aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life.
id UNSP_4078bfb00a5884223e96c852e9ffb2d7
oai_identifier_str oai:repositorio.unesp.br:11449/234067
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterizationFatigueFractographyHybrid compositemode I delaminationThe aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life.Department of Materials and Technology São Paulo State UniversityDepartment of Materials and Technology São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Monticeli, Francisco M. [UNESP]Voorwald, Herman Jacobus Cornelis [UNESP]Cioffi, Maria Odila Hilário [UNESP]2022-05-01T13:11:34Z2022-05-01T13:11:34Z2022-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.compstruct.2022.115291Composite Structures, v. 286.0263-8223http://hdl.handle.net/11449/23406710.1016/j.compstruct.2022.1152912-s2.0-85123749220Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComposite Structuresinfo:eu-repo/semantics/openAccess2022-05-01T13:11:34Zoai:repositorio.unesp.br:11449/234067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-05-01T13:11:34Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
title The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
spellingShingle The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
Monticeli, Francisco M. [UNESP]
Fatigue
Fractography
Hybrid composite
mode I delamination
title_short The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
title_full The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
title_fullStr The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
title_full_unstemmed The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
title_sort The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
author Monticeli, Francisco M. [UNESP]
author_facet Monticeli, Francisco M. [UNESP]
Voorwald, Herman Jacobus Cornelis [UNESP]
Cioffi, Maria Odila Hilário [UNESP]
author_role author
author2 Voorwald, Herman Jacobus Cornelis [UNESP]
Cioffi, Maria Odila Hilário [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Monticeli, Francisco M. [UNESP]
Voorwald, Herman Jacobus Cornelis [UNESP]
Cioffi, Maria Odila Hilário [UNESP]
dc.subject.por.fl_str_mv Fatigue
Fractography
Hybrid composite
mode I delamination
topic Fatigue
Fractography
Hybrid composite
mode I delamination
description The aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-01T13:11:34Z
2022-05-01T13:11:34Z
2022-04-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.compstruct.2022.115291
Composite Structures, v. 286.
0263-8223
http://hdl.handle.net/11449/234067
10.1016/j.compstruct.2022.115291
2-s2.0-85123749220
url http://dx.doi.org/10.1016/j.compstruct.2022.115291
http://hdl.handle.net/11449/234067
identifier_str_mv Composite Structures, v. 286.
0263-8223
10.1016/j.compstruct.2022.115291
2-s2.0-85123749220
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Composite Structures
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803047424737935360