The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.compstruct.2022.115291 http://hdl.handle.net/11449/234067 |
Resumo: | The aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life. |
id |
UNSP_4078bfb00a5884223e96c852e9ffb2d7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/234067 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterizationFatigueFractographyHybrid compositemode I delaminationThe aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life.Department of Materials and Technology São Paulo State UniversityDepartment of Materials and Technology São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Monticeli, Francisco M. [UNESP]Voorwald, Herman Jacobus Cornelis [UNESP]Cioffi, Maria Odila Hilário [UNESP]2022-05-01T13:11:34Z2022-05-01T13:11:34Z2022-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.compstruct.2022.115291Composite Structures, v. 286.0263-8223http://hdl.handle.net/11449/23406710.1016/j.compstruct.2022.1152912-s2.0-85123749220Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComposite Structuresinfo:eu-repo/semantics/openAccess2024-07-02T15:04:15Zoai:repositorio.unesp.br:11449/234067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:49:20.996115Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
title |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
spellingShingle |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization Monticeli, Francisco M. [UNESP] Fatigue Fractography Hybrid composite mode I delamination |
title_short |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
title_full |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
title_fullStr |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
title_full_unstemmed |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
title_sort |
The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization |
author |
Monticeli, Francisco M. [UNESP] |
author_facet |
Monticeli, Francisco M. [UNESP] Voorwald, Herman Jacobus Cornelis [UNESP] Cioffi, Maria Odila Hilário [UNESP] |
author_role |
author |
author2 |
Voorwald, Herman Jacobus Cornelis [UNESP] Cioffi, Maria Odila Hilário [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Monticeli, Francisco M. [UNESP] Voorwald, Herman Jacobus Cornelis [UNESP] Cioffi, Maria Odila Hilário [UNESP] |
dc.subject.por.fl_str_mv |
Fatigue Fractography Hybrid composite mode I delamination |
topic |
Fatigue Fractography Hybrid composite mode I delamination |
description |
The aim of this study was to characterize the mechanical behavior of a carbon-glass/epoxy hybrid composite under cyclic loading and following physical-based interpretation for mode I delamination modeling. The hybrid composite shows a higher surface roughness due to a micro-change in the crack direction at the carbon/epoxy and glass/epoxy interfaces, with the simultaneous presence of both reinforcements along the entire fracture surface. The organosilane bond (at the glass fiber surface) extends the interphase chain, increasing the deformation interfacial area. In conclusion, the application of the maximal carbon-glass/epoxy interfacial number in hybrid laminates is a feasible option to increase delamination resistance, since a greater amount of energy needs to be overcome to enable damage formation, which results in longer fatigue life. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-01T13:11:34Z 2022-05-01T13:11:34Z 2022-04-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.compstruct.2022.115291 Composite Structures, v. 286. 0263-8223 http://hdl.handle.net/11449/234067 10.1016/j.compstruct.2022.115291 2-s2.0-85123749220 |
url |
http://dx.doi.org/10.1016/j.compstruct.2022.115291 http://hdl.handle.net/11449/234067 |
identifier_str_mv |
Composite Structures, v. 286. 0263-8223 10.1016/j.compstruct.2022.115291 2-s2.0-85123749220 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Composite Structures |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129555844562944 |