Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading

Detalhes bibliográficos
Autor(a) principal: Monticeli, Francisco Maciel [UNESP]
Data de Publicação: 2022
Outros Autores: Cioffi, Maria Odila Hilario [UNESP], Voorwald, Herman Jacobus Cornelis [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ijfatigue.2021.106574
http://hdl.handle.net/11449/237736
Resumo: This work proposes a mechanistic model to evaluate and characterize the mode II delamination of carbon-glass/ fiber hybrid composites under fatigue loading. To this aim, crack growth was investigated at microscopic and macroscopic levels to measure the delamination propagation based on fracture mechanisms. The energy balance principle method described the energy release of the hybrid composite, evidencing greater energy available for fatigue delamination growth. The physics-based explanation for this enhancement is associated with the rougher fractured surface (tortuous propagation) due to the change in crack direction in the two reinforcements, stiffness synergy between the two fibers, and the silane coupling agent at the glass fiber surface. The proposed mecha-nistic model was used to analyze the physical-based behavior of the delamination of the hybrid and non-hybrid laminates, evidencing the contribution of each reinforcement to the SERR, with similar results at microscopic and macroscopic levels.
id UNSP_e637dc0e4823be7c5d5ecd2ccdfcc42b
oai_identifier_str oai:repositorio.unesp.br:11449/237736
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loadingHybrid compositemode II delaminationFatigueFractographyThis work proposes a mechanistic model to evaluate and characterize the mode II delamination of carbon-glass/ fiber hybrid composites under fatigue loading. To this aim, crack growth was investigated at microscopic and macroscopic levels to measure the delamination propagation based on fracture mechanisms. The energy balance principle method described the energy release of the hybrid composite, evidencing greater energy available for fatigue delamination growth. The physics-based explanation for this enhancement is associated with the rougher fractured surface (tortuous propagation) due to the change in crack direction in the two reinforcements, stiffness synergy between the two fibers, and the silane coupling agent at the glass fiber surface. The proposed mecha-nistic model was used to analyze the physical-based behavior of the delamination of the hybrid and non-hybrid laminates, evidencing the contribution of each reinforcement to the SERR, with similar results at microscopic and macroscopic levels.Solvay groupWrexham-UKFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ, Dept Mat & Technol, Guaratingueta, SP, BrazilSao Paulo State Univ, Dept Mat & Technol, Guaratingueta, SP, BrazilFAPESP: 2017/10606-4CAPES: 001Elsevier B.V.Universidade Estadual Paulista (UNESP)Monticeli, Francisco Maciel [UNESP]Cioffi, Maria Odila Hilario [UNESP]Voorwald, Herman Jacobus Cornelis [UNESP]2022-11-30T13:43:21Z2022-11-30T13:43:21Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10http://dx.doi.org/10.1016/j.ijfatigue.2021.106574International Journal Of Fatigue. Oxford: Elsevier Sci Ltd, v. 154, 10 p., 2022.0142-1123http://hdl.handle.net/11449/23773610.1016/j.ijfatigue.2021.106574WOS:000797380900001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Fatigueinfo:eu-repo/semantics/openAccess2022-11-30T13:43:21Zoai:repositorio.unesp.br:11449/237736Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-11-30T13:43:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
title Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
spellingShingle Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
Monticeli, Francisco Maciel [UNESP]
Hybrid composite
mode II delamination
Fatigue
Fractography
title_short Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
title_full Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
title_fullStr Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
title_full_unstemmed Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
title_sort Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading
author Monticeli, Francisco Maciel [UNESP]
author_facet Monticeli, Francisco Maciel [UNESP]
Cioffi, Maria Odila Hilario [UNESP]
Voorwald, Herman Jacobus Cornelis [UNESP]
author_role author
author2 Cioffi, Maria Odila Hilario [UNESP]
Voorwald, Herman Jacobus Cornelis [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Monticeli, Francisco Maciel [UNESP]
Cioffi, Maria Odila Hilario [UNESP]
Voorwald, Herman Jacobus Cornelis [UNESP]
dc.subject.por.fl_str_mv Hybrid composite
mode II delamination
Fatigue
Fractography
topic Hybrid composite
mode II delamination
Fatigue
Fractography
description This work proposes a mechanistic model to evaluate and characterize the mode II delamination of carbon-glass/ fiber hybrid composites under fatigue loading. To this aim, crack growth was investigated at microscopic and macroscopic levels to measure the delamination propagation based on fracture mechanisms. The energy balance principle method described the energy release of the hybrid composite, evidencing greater energy available for fatigue delamination growth. The physics-based explanation for this enhancement is associated with the rougher fractured surface (tortuous propagation) due to the change in crack direction in the two reinforcements, stiffness synergy between the two fibers, and the silane coupling agent at the glass fiber surface. The proposed mecha-nistic model was used to analyze the physical-based behavior of the delamination of the hybrid and non-hybrid laminates, evidencing the contribution of each reinforcement to the SERR, with similar results at microscopic and macroscopic levels.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-30T13:43:21Z
2022-11-30T13:43:21Z
2022-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ijfatigue.2021.106574
International Journal Of Fatigue. Oxford: Elsevier Sci Ltd, v. 154, 10 p., 2022.
0142-1123
http://hdl.handle.net/11449/237736
10.1016/j.ijfatigue.2021.106574
WOS:000797380900001
url http://dx.doi.org/10.1016/j.ijfatigue.2021.106574
http://hdl.handle.net/11449/237736
identifier_str_mv International Journal Of Fatigue. Oxford: Elsevier Sci Ltd, v. 154, 10 p., 2022.
0142-1123
10.1016/j.ijfatigue.2021.106574
WOS:000797380900001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Fatigue
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803046314787733504