Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jsv.2022.117216 http://hdl.handle.net/11449/245480 |
Resumo: | A Lie symmetry method-based approach is proposed for systematically computing general solutions in closed-form for the mode shape equation of non-uniform and unconventional vibrating rods. The mode shape equation is modeled by the elementary rod theory, addressing polynomial, exponential, trigonometric, and hyperbolic cross-section variations. The method provides algorithmic order-reduction steps for solving the investigated mode shape equation, producing a first-order Riccati equation whose integration reveals the aimed solutions for the problem. Illustrative examples are presented, including original solutions in closed-form as well as solutions previously obtained in the literature by other approaches. Mode shapes from general solutions with appropriate rod boundary conditions are also considered for different examples. |
id |
UNSP_435eb62cf0fe3172b99495ad79425452 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245480 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetriesGeneral solutionsNon-uniform rodsMode shapesElementary rod theoryLie symmetriesA Lie symmetry method-based approach is proposed for systematically computing general solutions in closed-form for the mode shape equation of non-uniform and unconventional vibrating rods. The mode shape equation is modeled by the elementary rod theory, addressing polynomial, exponential, trigonometric, and hyperbolic cross-section variations. The method provides algorithmic order-reduction steps for solving the investigated mode shape equation, producing a first-order Riccati equation whose integration reveals the aimed solutions for the problem. Illustrative examples are presented, including original solutions in closed-form as well as solutions previously obtained in the literature by other approaches. Mode shapes from general solutions with appropriate rod boundary conditions are also considered for different examples.Conselho Nacional de Desenvolvimento Cient�fico e Tecnol�gico (CNPq)Funda��o de Amparo � Pesquisa do Estado de S�o Paulo (FAPESP)FEDER -Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de InvestigacionJunta de AndaluciaSao Paulo State Univ, UNESP, Sch Engn Ilha Solteira, Mech Engn Dept, BR-15385 Ilha Solteira, BrazilUniv Cadiz, Dept Math, Puerto Real 11510, SpainSao Paulo State Univ, UNESP, Sch Engn Ilha Solteira, Mech Engn Dept, BR-15385 Ilha Solteira, BrazilCNPq: 131846/2020-5CNPq: 306526/2019-0CNPq: 404463/2016-9FAPESP: 21/12894-2FAPESP: 16/22473-6FEDER -Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion: PGC2018-101514-B-I00Junta de Andalucia: FQM-377Elsevier B.V.Universidade Estadual Paulista (UNESP)Univ CadizNunes, Afonso W. [UNESP]Silva, Samuel da [UNESP]Ruiz, Adrian2023-07-29T11:56:15Z2023-07-29T11:56:15Z2022-08-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10http://dx.doi.org/10.1016/j.jsv.2022.117216Journal of Sound and Vibration. London: Academic Press Ltd- Elsevier Science Ltd, v. 538, 10 p., 2022.0022-460Xhttp://hdl.handle.net/11449/24548010.1016/j.jsv.2022.117216WOS:000873990000005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Sound And Vibrationinfo:eu-repo/semantics/openAccess2024-07-04T20:06:15Zoai:repositorio.unesp.br:11449/245480Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:45:38.913772Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
title |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
spellingShingle |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries Nunes, Afonso W. [UNESP] General solutions Non-uniform rods Mode shapes Elementary rod theory Lie symmetries |
title_short |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
title_full |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
title_fullStr |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
title_full_unstemmed |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
title_sort |
Exact general solutions for the mode shapes of longitudinally vibrating non-uniform rods via Lie symmetries |
author |
Nunes, Afonso W. [UNESP] |
author_facet |
Nunes, Afonso W. [UNESP] Silva, Samuel da [UNESP] Ruiz, Adrian |
author_role |
author |
author2 |
Silva, Samuel da [UNESP] Ruiz, Adrian |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Univ Cadiz |
dc.contributor.author.fl_str_mv |
Nunes, Afonso W. [UNESP] Silva, Samuel da [UNESP] Ruiz, Adrian |
dc.subject.por.fl_str_mv |
General solutions Non-uniform rods Mode shapes Elementary rod theory Lie symmetries |
topic |
General solutions Non-uniform rods Mode shapes Elementary rod theory Lie symmetries |
description |
A Lie symmetry method-based approach is proposed for systematically computing general solutions in closed-form for the mode shape equation of non-uniform and unconventional vibrating rods. The mode shape equation is modeled by the elementary rod theory, addressing polynomial, exponential, trigonometric, and hyperbolic cross-section variations. The method provides algorithmic order-reduction steps for solving the investigated mode shape equation, producing a first-order Riccati equation whose integration reveals the aimed solutions for the problem. Illustrative examples are presented, including original solutions in closed-form as well as solutions previously obtained in the literature by other approaches. Mode shapes from general solutions with appropriate rod boundary conditions are also considered for different examples. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-17 2023-07-29T11:56:15Z 2023-07-29T11:56:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jsv.2022.117216 Journal of Sound and Vibration. London: Academic Press Ltd- Elsevier Science Ltd, v. 538, 10 p., 2022. 0022-460X http://hdl.handle.net/11449/245480 10.1016/j.jsv.2022.117216 WOS:000873990000005 |
url |
http://dx.doi.org/10.1016/j.jsv.2022.117216 http://hdl.handle.net/11449/245480 |
identifier_str_mv |
Journal of Sound and Vibration. London: Academic Press Ltd- Elsevier Science Ltd, v. 538, 10 p., 2022. 0022-460X 10.1016/j.jsv.2022.117216 WOS:000873990000005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Sound And Vibration |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
10 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128975349743616 |