Invariant Algebraic Surfaces and Impasses

Detalhes bibliográficos
Autor(a) principal: da Silva, Paulo Ricardo [UNESP]
Data de Publicação: 2021
Outros Autores: Perez, Otavio Henrique [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s12346-021-00465-x
http://hdl.handle.net/11449/206067
Resumo: Polynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses.
id UNSP_444d4ae5af86a76bfb5369e4a029f383
oai_identifier_str oai:repositorio.unesp.br:11449/206067
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Invariant Algebraic Surfaces and ImpassesDifferential-algebraic equationsImplicit ordinary differential equationsInvariant manifoldsPolynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Institute of Biosciences Humanities and Exact Sciences São Paulo State University (Unesp), Rua C. Colombo, 2265Institute of Biosciences Humanities and Exact Sciences São Paulo State University (Unesp), Rua C. Colombo, 2265FAPESP: 2016/22310-0FAPESP: 2019/10269-3CAPES: 88881.310741/2018-01Universidade Estadual Paulista (Unesp)da Silva, Paulo Ricardo [UNESP]Perez, Otavio Henrique [UNESP]2021-06-25T10:26:03Z2021-06-25T10:26:03Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s12346-021-00465-xQualitative Theory of Dynamical Systems, v. 20, n. 2, 2021.1662-35921575-5460http://hdl.handle.net/11449/20606710.1007/s12346-021-00465-x2-s2.0-85102755132Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengQualitative Theory of Dynamical Systemsinfo:eu-repo/semantics/openAccess2021-10-22T20:49:00Zoai:repositorio.unesp.br:11449/206067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:32:55.822982Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Invariant Algebraic Surfaces and Impasses
title Invariant Algebraic Surfaces and Impasses
spellingShingle Invariant Algebraic Surfaces and Impasses
da Silva, Paulo Ricardo [UNESP]
Differential-algebraic equations
Implicit ordinary differential equations
Invariant manifolds
title_short Invariant Algebraic Surfaces and Impasses
title_full Invariant Algebraic Surfaces and Impasses
title_fullStr Invariant Algebraic Surfaces and Impasses
title_full_unstemmed Invariant Algebraic Surfaces and Impasses
title_sort Invariant Algebraic Surfaces and Impasses
author da Silva, Paulo Ricardo [UNESP]
author_facet da Silva, Paulo Ricardo [UNESP]
Perez, Otavio Henrique [UNESP]
author_role author
author2 Perez, Otavio Henrique [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv da Silva, Paulo Ricardo [UNESP]
Perez, Otavio Henrique [UNESP]
dc.subject.por.fl_str_mv Differential-algebraic equations
Implicit ordinary differential equations
Invariant manifolds
topic Differential-algebraic equations
Implicit ordinary differential equations
Invariant manifolds
description Polynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:26:03Z
2021-06-25T10:26:03Z
2021-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s12346-021-00465-x
Qualitative Theory of Dynamical Systems, v. 20, n. 2, 2021.
1662-3592
1575-5460
http://hdl.handle.net/11449/206067
10.1007/s12346-021-00465-x
2-s2.0-85102755132
url http://dx.doi.org/10.1007/s12346-021-00465-x
http://hdl.handle.net/11449/206067
identifier_str_mv Qualitative Theory of Dynamical Systems, v. 20, n. 2, 2021.
1662-3592
1575-5460
10.1007/s12346-021-00465-x
2-s2.0-85102755132
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Qualitative Theory of Dynamical Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128670156455936