Invariant Algebraic Surfaces and Impasses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s12346-021-00465-x http://hdl.handle.net/11449/206067 |
Resumo: | Polynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses. |
id |
UNSP_444d4ae5af86a76bfb5369e4a029f383 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/206067 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Invariant Algebraic Surfaces and ImpassesDifferential-algebraic equationsImplicit ordinary differential equationsInvariant manifoldsPolynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Institute of Biosciences Humanities and Exact Sciences São Paulo State University (Unesp), Rua C. Colombo, 2265Institute of Biosciences Humanities and Exact Sciences São Paulo State University (Unesp), Rua C. Colombo, 2265FAPESP: 2016/22310-0FAPESP: 2019/10269-3CAPES: 88881.310741/2018-01Universidade Estadual Paulista (Unesp)da Silva, Paulo Ricardo [UNESP]Perez, Otavio Henrique [UNESP]2021-06-25T10:26:03Z2021-06-25T10:26:03Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s12346-021-00465-xQualitative Theory of Dynamical Systems, v. 20, n. 2, 2021.1662-35921575-5460http://hdl.handle.net/11449/20606710.1007/s12346-021-00465-x2-s2.0-85102755132Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengQualitative Theory of Dynamical Systemsinfo:eu-repo/semantics/openAccess2021-10-22T20:49:00Zoai:repositorio.unesp.br:11449/206067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:32:55.822982Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Invariant Algebraic Surfaces and Impasses |
title |
Invariant Algebraic Surfaces and Impasses |
spellingShingle |
Invariant Algebraic Surfaces and Impasses da Silva, Paulo Ricardo [UNESP] Differential-algebraic equations Implicit ordinary differential equations Invariant manifolds |
title_short |
Invariant Algebraic Surfaces and Impasses |
title_full |
Invariant Algebraic Surfaces and Impasses |
title_fullStr |
Invariant Algebraic Surfaces and Impasses |
title_full_unstemmed |
Invariant Algebraic Surfaces and Impasses |
title_sort |
Invariant Algebraic Surfaces and Impasses |
author |
da Silva, Paulo Ricardo [UNESP] |
author_facet |
da Silva, Paulo Ricardo [UNESP] Perez, Otavio Henrique [UNESP] |
author_role |
author |
author2 |
Perez, Otavio Henrique [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
da Silva, Paulo Ricardo [UNESP] Perez, Otavio Henrique [UNESP] |
dc.subject.por.fl_str_mv |
Differential-algebraic equations Implicit ordinary differential equations Invariant manifolds |
topic |
Differential-algebraic equations Implicit ordinary differential equations Invariant manifolds |
description |
Polynomial vector fields X: R3→ R3 that have invariant algebraic surfaces of the form M={f(x,y)z-g(x,y)=0}are considered. We prove that trajectories of X on M are solutions of a constrained differential system having I= { f(x, y) = 0 } as impasse curve. The main goal of the paper is to study the flow on M near points that are projected on typical impasse singularities. The Falkner–Skan equation (Llibre and Valls in Comput Fluids 86:71–76, 2013), the Lorenz system (Llibre and Zhang in J Math Phys 43:1622–1645, 2002) and the Chen system (Lu and Zhang in Int J Bifurc Chaos 17–8:2739–2748, 2007) are some of the well-known polynomial systems that fit our hypotheses. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:26:03Z 2021-06-25T10:26:03Z 2021-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12346-021-00465-x Qualitative Theory of Dynamical Systems, v. 20, n. 2, 2021. 1662-3592 1575-5460 http://hdl.handle.net/11449/206067 10.1007/s12346-021-00465-x 2-s2.0-85102755132 |
url |
http://dx.doi.org/10.1007/s12346-021-00465-x http://hdl.handle.net/11449/206067 |
identifier_str_mv |
Qualitative Theory of Dynamical Systems, v. 20, n. 2, 2021. 1662-3592 1575-5460 10.1007/s12346-021-00465-x 2-s2.0-85102755132 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Qualitative Theory of Dynamical Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128670156455936 |