Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1142/S0219498821500298 http://hdl.handle.net/11449/198518 |
Resumo: | In this paper, we construct some families of rotated unimodular lattices and rotated direct sum of Barnes-Wall lattices BWn for n = 4, 8 and 16 via ideals of the ring of the integers azeta&2rq + ;zeta&2rq-1] for q = 3, 5 and 15. We also construct rotated BW16 and BW32-lattices via a;-submodules of azeta&2r15 + ;zeta&2r15-1]. Our focus is on totally real number fields since the associated lattices have full diversity and then may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. The minimum product distances of such constructions are also presented here. |
id |
UNSP_451569256a1f691b2d7ce30a68bd619b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198518 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall latticesBarnes-Wall latticescyclotomic fieldsminimum product distanceUnimodular latticesIn this paper, we construct some families of rotated unimodular lattices and rotated direct sum of Barnes-Wall lattices BWn for n = 4, 8 and 16 via ideals of the ring of the integers azeta&2rq + ;zeta&2rq-1] for q = 3, 5 and 15. We also construct rotated BW16 and BW32-lattices via a;-submodules of azeta&2r15 + ;zeta&2r15-1]. Our focus is on totally real number fields since the associated lattices have full diversity and then may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. The minimum product distances of such constructions are also presented here.School of Applied Sciences University of CampinasSchool of Sciences São Paulo State University (UNESP)Institute of Science and Technology Federal University of São Paulo São José Dos CamposInstitute of Mathematics Statistics and Scientific Computing University of CampinasSchool of Sciences São Paulo State University (UNESP)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Strapasson, João EloirFerrari, Agnaldo José [UNESP]Jorge, Grasiele CristianeCosta, Sueli Irene Rodrigues2020-12-12T01:15:01Z2020-12-12T01:15:01Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0219498821500298Journal of Algebra and its Applications.0219-4988http://hdl.handle.net/11449/19851810.1142/S02194988215002982-s2.0-85079415345Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebra and its Applicationsinfo:eu-repo/semantics/openAccess2021-10-22T13:22:11Zoai:repositorio.unesp.br:11449/198518Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:16.885567Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
title |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
spellingShingle |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices Strapasson, João Eloir Barnes-Wall lattices cyclotomic fields minimum product distance Unimodular lattices |
title_short |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
title_full |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
title_fullStr |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
title_full_unstemmed |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
title_sort |
Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices |
author |
Strapasson, João Eloir |
author_facet |
Strapasson, João Eloir Ferrari, Agnaldo José [UNESP] Jorge, Grasiele Cristiane Costa, Sueli Irene Rodrigues |
author_role |
author |
author2 |
Ferrari, Agnaldo José [UNESP] Jorge, Grasiele Cristiane Costa, Sueli Irene Rodrigues |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Strapasson, João Eloir Ferrari, Agnaldo José [UNESP] Jorge, Grasiele Cristiane Costa, Sueli Irene Rodrigues |
dc.subject.por.fl_str_mv |
Barnes-Wall lattices cyclotomic fields minimum product distance Unimodular lattices |
topic |
Barnes-Wall lattices cyclotomic fields minimum product distance Unimodular lattices |
description |
In this paper, we construct some families of rotated unimodular lattices and rotated direct sum of Barnes-Wall lattices BWn for n = 4, 8 and 16 via ideals of the ring of the integers azeta&2rq + ;zeta&2rq-1] for q = 3, 5 and 15. We also construct rotated BW16 and BW32-lattices via a;-submodules of azeta&2r15 + ;zeta&2r15-1]. Our focus is on totally real number fields since the associated lattices have full diversity and then may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. The minimum product distances of such constructions are also presented here. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:15:01Z 2020-12-12T01:15:01Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1142/S0219498821500298 Journal of Algebra and its Applications. 0219-4988 http://hdl.handle.net/11449/198518 10.1142/S0219498821500298 2-s2.0-85079415345 |
url |
http://dx.doi.org/10.1142/S0219498821500298 http://hdl.handle.net/11449/198518 |
identifier_str_mv |
Journal of Algebra and its Applications. 0219-4988 10.1142/S0219498821500298 2-s2.0-85079415345 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Algebra and its Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128264186626048 |