Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique

Detalhes bibliográficos
Autor(a) principal: Lieira, Douglas D. [UNESP]
Data de Publicação: 2021
Outros Autores: Quessada, Matheus S. [UNESP], da Costa, Joahannes B.D., Cerqueira, Eduardo, Rosário, Denis, Meneguette, Rodolfo I.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IWCMC51323.2021.9498784
http://hdl.handle.net/11449/223560
Resumo: Intelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods.
id UNSP_4da49de073e59997f4a45c445faac6d6
oai_identifier_str oai:repositorio.unesp.br:11449/223560
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic TechniqueMeta-heuristicTask allocationVehicular cloudIntelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State University (UNESP), São PauloFederal Institute of São Paulo (IFSP), São PauloUniversity of Campinas (UNICAMP), São PauloFederal University of Pará (UFPA), ParáUniversity of São Paulo (USP), São PauloSao Paulo State University (UNESP), São PauloFAPESP: 2018/16703-4FAPESP: 2020/07162-0CNPq: 309822/2018-1CNPq: 407248/2018-8Universidade Estadual Paulista (UNESP)Federal Institute of São Paulo (IFSP)Universidade Estadual de Campinas (UNICAMP)Universidade Federal do Pará (UFPA)Universidade de São Paulo (USP)Lieira, Douglas D. [UNESP]Quessada, Matheus S. [UNESP]da Costa, Joahannes B.D.Cerqueira, EduardoRosário, DenisMeneguette, Rodolfo I.2022-04-28T19:51:25Z2022-04-28T19:51:25Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject358-363http://dx.doi.org/10.1109/IWCMC51323.2021.94987842021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363.http://hdl.handle.net/11449/22356010.1109/IWCMC51323.2021.94987842-s2.0-85125668148Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 International Wireless Communications and Mobile Computing, IWCMC 2021info:eu-repo/semantics/openAccess2022-04-28T19:51:25Zoai:repositorio.unesp.br:11449/223560Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:31:35.130284Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
title Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
spellingShingle Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
Lieira, Douglas D. [UNESP]
Meta-heuristic
Task allocation
Vehicular cloud
title_short Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
title_full Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
title_fullStr Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
title_full_unstemmed Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
title_sort Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
author Lieira, Douglas D. [UNESP]
author_facet Lieira, Douglas D. [UNESP]
Quessada, Matheus S. [UNESP]
da Costa, Joahannes B.D.
Cerqueira, Eduardo
Rosário, Denis
Meneguette, Rodolfo I.
author_role author
author2 Quessada, Matheus S. [UNESP]
da Costa, Joahannes B.D.
Cerqueira, Eduardo
Rosário, Denis
Meneguette, Rodolfo I.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Federal Institute of São Paulo (IFSP)
Universidade Estadual de Campinas (UNICAMP)
Universidade Federal do Pará (UFPA)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Lieira, Douglas D. [UNESP]
Quessada, Matheus S. [UNESP]
da Costa, Joahannes B.D.
Cerqueira, Eduardo
Rosário, Denis
Meneguette, Rodolfo I.
dc.subject.por.fl_str_mv Meta-heuristic
Task allocation
Vehicular cloud
topic Meta-heuristic
Task allocation
Vehicular cloud
description Intelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-28T19:51:25Z
2022-04-28T19:51:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IWCMC51323.2021.9498784
2021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363.
http://hdl.handle.net/11449/223560
10.1109/IWCMC51323.2021.9498784
2-s2.0-85125668148
url http://dx.doi.org/10.1109/IWCMC51323.2021.9498784
http://hdl.handle.net/11449/223560
identifier_str_mv 2021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363.
10.1109/IWCMC51323.2021.9498784
2-s2.0-85125668148
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2021 International Wireless Communications and Mobile Computing, IWCMC 2021
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 358-363
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129330431131648