Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IWCMC51323.2021.9498784 http://hdl.handle.net/11449/223560 |
Resumo: | Intelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods. |
id |
UNSP_4da49de073e59997f4a45c445faac6d6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223560 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic TechniqueMeta-heuristicTask allocationVehicular cloudIntelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State University (UNESP), São PauloFederal Institute of São Paulo (IFSP), São PauloUniversity of Campinas (UNICAMP), São PauloFederal University of Pará (UFPA), ParáUniversity of São Paulo (USP), São PauloSao Paulo State University (UNESP), São PauloFAPESP: 2018/16703-4FAPESP: 2020/07162-0CNPq: 309822/2018-1CNPq: 407248/2018-8Universidade Estadual Paulista (UNESP)Federal Institute of São Paulo (IFSP)Universidade Estadual de Campinas (UNICAMP)Universidade Federal do Pará (UFPA)Universidade de São Paulo (USP)Lieira, Douglas D. [UNESP]Quessada, Matheus S. [UNESP]da Costa, Joahannes B.D.Cerqueira, EduardoRosário, DenisMeneguette, Rodolfo I.2022-04-28T19:51:25Z2022-04-28T19:51:25Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject358-363http://dx.doi.org/10.1109/IWCMC51323.2021.94987842021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363.http://hdl.handle.net/11449/22356010.1109/IWCMC51323.2021.94987842-s2.0-85125668148Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 International Wireless Communications and Mobile Computing, IWCMC 2021info:eu-repo/semantics/openAccess2022-04-28T19:51:25Zoai:repositorio.unesp.br:11449/223560Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:31:35.130284Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
title |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
spellingShingle |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique Lieira, Douglas D. [UNESP] Meta-heuristic Task allocation Vehicular cloud |
title_short |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
title_full |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
title_fullStr |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
title_full_unstemmed |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
title_sort |
Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique |
author |
Lieira, Douglas D. [UNESP] |
author_facet |
Lieira, Douglas D. [UNESP] Quessada, Matheus S. [UNESP] da Costa, Joahannes B.D. Cerqueira, Eduardo Rosário, Denis Meneguette, Rodolfo I. |
author_role |
author |
author2 |
Quessada, Matheus S. [UNESP] da Costa, Joahannes B.D. Cerqueira, Eduardo Rosário, Denis Meneguette, Rodolfo I. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Federal Institute of São Paulo (IFSP) Universidade Estadual de Campinas (UNICAMP) Universidade Federal do Pará (UFPA) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Lieira, Douglas D. [UNESP] Quessada, Matheus S. [UNESP] da Costa, Joahannes B.D. Cerqueira, Eduardo Rosário, Denis Meneguette, Rodolfo I. |
dc.subject.por.fl_str_mv |
Meta-heuristic Task allocation Vehicular cloud |
topic |
Meta-heuristic Task allocation Vehicular cloud |
description |
Intelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-28T19:51:25Z 2022-04-28T19:51:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IWCMC51323.2021.9498784 2021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363. http://hdl.handle.net/11449/223560 10.1109/IWCMC51323.2021.9498784 2-s2.0-85125668148 |
url |
http://dx.doi.org/10.1109/IWCMC51323.2021.9498784 http://hdl.handle.net/11449/223560 |
identifier_str_mv |
2021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363. 10.1109/IWCMC51323.2021.9498784 2-s2.0-85125668148 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2021 International Wireless Communications and Mobile Computing, IWCMC 2021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
358-363 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129330431131648 |