Manifold learning-based clustering approach applied to anomaly detection in surveillance videos

Detalhes bibliográficos
Autor(a) principal: Lopes, Leonardo Tadeu [UNESP]
Data de Publicação: 2020
Outros Autores: Valem, Lucas Pascotti [UNESP], Guimarães Pedronette, Daniel Carlos [UNESP], Guilherme, Ivan Rizzo [UNESP], Papa, João Paulo [UNESP], Silva Santana, Marcos Cleison [UNESP], Colombo, Danilo
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/201699
Resumo: The huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.
id UNSP_4ed15cd5ec8d51d2b1741bf72ba8a90d
oai_identifier_str oai:repositorio.unesp.br:11449/201699
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Manifold learning-based clustering approach applied to anomaly detection in surveillance videosAnomaly DetectionClusteringUnsupervised Manifold LearningVideo SurveillanceThe huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)PetrobrasConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Statistics Applied Math. and Computing UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityCenpes Petróleo Brasileiro S.A. - PetrobrasDepartment of Statistics Applied Math. and Computing UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityFAPESP: 2013/07375-0FAPESP: 2014/12236-1Petrobras: 2017/00285-6FAPESP: 2017/25908-6FAPESP: 2018/15597-6FAPESP: 2018/21934-5FAPESP: 2019/02205-5FAPESP: 2019/07825-1CNPq: 307066/2017-7CNPq: 308194/2017-9CNPq: 427968/2018-6Universidade Estadual Paulista (Unesp)Petróleo Brasileiro S.A. - PetrobrasLopes, Leonardo Tadeu [UNESP]Valem, Lucas Pascotti [UNESP]Guimarães Pedronette, Daniel Carlos [UNESP]Guilherme, Ivan Rizzo [UNESP]Papa, João Paulo [UNESP]Silva Santana, Marcos Cleison [UNESP]Colombo, Danilo2020-12-12T02:39:33Z2020-12-12T02:39:33Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject404-412VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412.http://hdl.handle.net/11449/2016992-s2.0-85083515716Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/201699Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:00:37.467982Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
title Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
spellingShingle Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
Lopes, Leonardo Tadeu [UNESP]
Anomaly Detection
Clustering
Unsupervised Manifold Learning
Video Surveillance
title_short Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
title_full Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
title_fullStr Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
title_full_unstemmed Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
title_sort Manifold learning-based clustering approach applied to anomaly detection in surveillance videos
author Lopes, Leonardo Tadeu [UNESP]
author_facet Lopes, Leonardo Tadeu [UNESP]
Valem, Lucas Pascotti [UNESP]
Guimarães Pedronette, Daniel Carlos [UNESP]
Guilherme, Ivan Rizzo [UNESP]
Papa, João Paulo [UNESP]
Silva Santana, Marcos Cleison [UNESP]
Colombo, Danilo
author_role author
author2 Valem, Lucas Pascotti [UNESP]
Guimarães Pedronette, Daniel Carlos [UNESP]
Guilherme, Ivan Rizzo [UNESP]
Papa, João Paulo [UNESP]
Silva Santana, Marcos Cleison [UNESP]
Colombo, Danilo
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Petróleo Brasileiro S.A. - Petrobras
dc.contributor.author.fl_str_mv Lopes, Leonardo Tadeu [UNESP]
Valem, Lucas Pascotti [UNESP]
Guimarães Pedronette, Daniel Carlos [UNESP]
Guilherme, Ivan Rizzo [UNESP]
Papa, João Paulo [UNESP]
Silva Santana, Marcos Cleison [UNESP]
Colombo, Danilo
dc.subject.por.fl_str_mv Anomaly Detection
Clustering
Unsupervised Manifold Learning
Video Surveillance
topic Anomaly Detection
Clustering
Unsupervised Manifold Learning
Video Surveillance
description The huge increase in the amount of multimedia data available and the pressing need for organizing them in different categories, especially in scenarios where there are no labels available, makes data clustering an essential task in different scenarios. In this work, we present a novel clustering method based on an unsupervised manifold learning algorithm, in which a more effective similarity measure is computed by the manifold learning and used for clustering purposes. The proposed approach is applied to anomaly detection in videos and used in combination with different background segmentation methods to improve their effectiveness. An experimental evaluation is conducted on three different image datasets and one video dataset. The obtained results indicate superior accuracy in most clustering tasks when compared to the baselines. Results also demonstrate that the clustering step can improve the results of background subtraction approaches in the majority of cases.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:39:33Z
2020-12-12T02:39:33Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412.
http://hdl.handle.net/11449/201699
2-s2.0-85083515716
identifier_str_mv VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 404-412.
2-s2.0-85083515716
url http://hdl.handle.net/11449/201699
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 404-412
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129273588875264