A Change-Driven Image Foveation Approach for Tracking Plant Phenology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/rs12091409 http://hdl.handle.net/11449/197013 |
Resumo: | One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies. |
id |
UNSP_4fbae55f28d138e29efde92d0646383a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/197013 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Change-Driven Image Foveation Approach for Tracking Plant Phenologyfoveal modelimage foveationhilbert curveplant phenology trackingspace-variant imageOne of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, BrazilNorwegian Univ Sci & Technol, Dept ICT & Nat Sci, Larsgardsvegen 2, N-6009 Alesund, NorwaySao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, BrazilUniv Stirling, Fac Nat Resources, Biol & Environm Sci, Stirling FK9 4LA, ScotlandSao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, BrazilCNPq: 307560/2016-3CNPq: 311820/2018-2CNPq: 310144/2015-9FAPESP: 2014/12236-1FAPESP: 2014/00215-0FAPESP: 2015/24494-8FAPESP: 2016/50250-1FAPESP: 2016/01413-5FAPESP: 2017/20945-0FAPESP: 2013/50155-0FAPESP: 2014/50715-9CAPES: 001MdpiUniversidade Estadual de Campinas (UNICAMP)Norwegian Univ Sci & TechnolUniversidade Estadual Paulista (Unesp)Univ StirlingSilva, EwertonTorres, Ricardo S.Alberton, Bruna [UNESP]Morellato, Leonor Patricia C. [UNESP]Silva, Thiago S. F.2020-12-10T20:03:30Z2020-12-10T20:03:30Z2020-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14http://dx.doi.org/10.3390/rs12091409Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020.http://hdl.handle.net/11449/19701310.3390/rs12091409WOS:000543394000056Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRemote Sensinginfo:eu-repo/semantics/openAccess2021-10-23T10:18:18Zoai:repositorio.unesp.br:11449/197013Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:03:52.074552Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
title |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
spellingShingle |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology Silva, Ewerton foveal model image foveation hilbert curve plant phenology tracking space-variant image |
title_short |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
title_full |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
title_fullStr |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
title_full_unstemmed |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
title_sort |
A Change-Driven Image Foveation Approach for Tracking Plant Phenology |
author |
Silva, Ewerton |
author_facet |
Silva, Ewerton Torres, Ricardo S. Alberton, Bruna [UNESP] Morellato, Leonor Patricia C. [UNESP] Silva, Thiago S. F. |
author_role |
author |
author2 |
Torres, Ricardo S. Alberton, Bruna [UNESP] Morellato, Leonor Patricia C. [UNESP] Silva, Thiago S. F. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Norwegian Univ Sci & Technol Universidade Estadual Paulista (Unesp) Univ Stirling |
dc.contributor.author.fl_str_mv |
Silva, Ewerton Torres, Ricardo S. Alberton, Bruna [UNESP] Morellato, Leonor Patricia C. [UNESP] Silva, Thiago S. F. |
dc.subject.por.fl_str_mv |
foveal model image foveation hilbert curve plant phenology tracking space-variant image |
topic |
foveal model image foveation hilbert curve plant phenology tracking space-variant image |
description |
One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T20:03:30Z 2020-12-10T20:03:30Z 2020-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/rs12091409 Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020. http://hdl.handle.net/11449/197013 10.3390/rs12091409 WOS:000543394000056 |
url |
http://dx.doi.org/10.3390/rs12091409 http://hdl.handle.net/11449/197013 |
identifier_str_mv |
Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020. 10.3390/rs12091409 WOS:000543394000056 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Remote Sensing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 |
dc.publisher.none.fl_str_mv |
Mdpi |
publisher.none.fl_str_mv |
Mdpi |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129579138678784 |