A Change-Driven Image Foveation Approach for Tracking Plant Phenology

Detalhes bibliográficos
Autor(a) principal: Silva, Ewerton
Data de Publicação: 2020
Outros Autores: Torres, Ricardo S., Alberton, Bruna [UNESP], Morellato, Leonor Patricia C. [UNESP], Silva, Thiago S. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/rs12091409
http://hdl.handle.net/11449/197013
Resumo: One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.
id UNSP_4fbae55f28d138e29efde92d0646383a
oai_identifier_str oai:repositorio.unesp.br:11449/197013
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Change-Driven Image Foveation Approach for Tracking Plant Phenologyfoveal modelimage foveationhilbert curveplant phenology trackingspace-variant imageOne of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, BrazilNorwegian Univ Sci & Technol, Dept ICT & Nat Sci, Larsgardsvegen 2, N-6009 Alesund, NorwaySao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, BrazilUniv Stirling, Fac Nat Resources, Biol & Environm Sci, Stirling FK9 4LA, ScotlandSao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, BrazilCNPq: 307560/2016-3CNPq: 311820/2018-2CNPq: 310144/2015-9FAPESP: 2014/12236-1FAPESP: 2014/00215-0FAPESP: 2015/24494-8FAPESP: 2016/50250-1FAPESP: 2016/01413-5FAPESP: 2017/20945-0FAPESP: 2013/50155-0FAPESP: 2014/50715-9CAPES: 001MdpiUniversidade Estadual de Campinas (UNICAMP)Norwegian Univ Sci & TechnolUniversidade Estadual Paulista (Unesp)Univ StirlingSilva, EwertonTorres, Ricardo S.Alberton, Bruna [UNESP]Morellato, Leonor Patricia C. [UNESP]Silva, Thiago S. F.2020-12-10T20:03:30Z2020-12-10T20:03:30Z2020-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14http://dx.doi.org/10.3390/rs12091409Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020.http://hdl.handle.net/11449/19701310.3390/rs12091409WOS:000543394000056Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRemote Sensinginfo:eu-repo/semantics/openAccess2021-10-23T10:18:18Zoai:repositorio.unesp.br:11449/197013Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:03:52.074552Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Change-Driven Image Foveation Approach for Tracking Plant Phenology
title A Change-Driven Image Foveation Approach for Tracking Plant Phenology
spellingShingle A Change-Driven Image Foveation Approach for Tracking Plant Phenology
Silva, Ewerton
foveal model
image foveation
hilbert curve
plant phenology tracking
space-variant image
title_short A Change-Driven Image Foveation Approach for Tracking Plant Phenology
title_full A Change-Driven Image Foveation Approach for Tracking Plant Phenology
title_fullStr A Change-Driven Image Foveation Approach for Tracking Plant Phenology
title_full_unstemmed A Change-Driven Image Foveation Approach for Tracking Plant Phenology
title_sort A Change-Driven Image Foveation Approach for Tracking Plant Phenology
author Silva, Ewerton
author_facet Silva, Ewerton
Torres, Ricardo S.
Alberton, Bruna [UNESP]
Morellato, Leonor Patricia C. [UNESP]
Silva, Thiago S. F.
author_role author
author2 Torres, Ricardo S.
Alberton, Bruna [UNESP]
Morellato, Leonor Patricia C. [UNESP]
Silva, Thiago S. F.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Norwegian Univ Sci & Technol
Universidade Estadual Paulista (Unesp)
Univ Stirling
dc.contributor.author.fl_str_mv Silva, Ewerton
Torres, Ricardo S.
Alberton, Bruna [UNESP]
Morellato, Leonor Patricia C. [UNESP]
Silva, Thiago S. F.
dc.subject.por.fl_str_mv foveal model
image foveation
hilbert curve
plant phenology tracking
space-variant image
topic foveal model
image foveation
hilbert curve
plant phenology tracking
space-variant image
description One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T20:03:30Z
2020-12-10T20:03:30Z
2020-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/rs12091409
Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020.
http://hdl.handle.net/11449/197013
10.3390/rs12091409
WOS:000543394000056
url http://dx.doi.org/10.3390/rs12091409
http://hdl.handle.net/11449/197013
identifier_str_mv Remote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020.
10.3390/rs12091409
WOS:000543394000056
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Remote Sensing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 14
dc.publisher.none.fl_str_mv Mdpi
publisher.none.fl_str_mv Mdpi
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129579138678784