On the efficacy of texture analysis for crowd monitoring

Detalhes bibliográficos
Autor(a) principal: Marana, A. N.
Data de Publicação: 1998
Outros Autores: Costa, L. F., Lotufo, R. A., Velastin, S. A.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SIBGRA.1998.722773
http://hdl.handle.net/11449/24842
Resumo: The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.
id UNSP_50132bcc8bc67b3367d4fe24202e580c
oai_identifier_str oai:repositorio.unesp.br:11449/24842
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the efficacy of texture analysis for crowd monitoringcrowd monitoringtexture analysisThe goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.UNESP, DEMACIGCE, Rio Claro, SP, BrazilUNESP, DEMACIGCE, Rio Claro, SP, BrazilInstitute of Electrical and Electronics Engineers (IEEE), Computer SocUniversidade Estadual Paulista (Unesp)Marana, A. N.Costa, L. F.Lotufo, R. A.Velastin, S. A.2014-02-26T17:19:30Z2014-05-20T14:16:06Z2014-02-26T17:19:30Z2014-05-20T14:16:06Z1998-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject354-361http://dx.doi.org/10.1109/SIBGRA.1998.722773Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998.http://hdl.handle.net/11449/2484210.1109/SIBGRA.1998.722773WOS:000076805000047Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:37:50Zoai:repositorio.unesp.br:11449/24842Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:37:03.031096Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the efficacy of texture analysis for crowd monitoring
title On the efficacy of texture analysis for crowd monitoring
spellingShingle On the efficacy of texture analysis for crowd monitoring
Marana, A. N.
crowd monitoring
texture analysis
title_short On the efficacy of texture analysis for crowd monitoring
title_full On the efficacy of texture analysis for crowd monitoring
title_fullStr On the efficacy of texture analysis for crowd monitoring
title_full_unstemmed On the efficacy of texture analysis for crowd monitoring
title_sort On the efficacy of texture analysis for crowd monitoring
author Marana, A. N.
author_facet Marana, A. N.
Costa, L. F.
Lotufo, R. A.
Velastin, S. A.
author_role author
author2 Costa, L. F.
Lotufo, R. A.
Velastin, S. A.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Marana, A. N.
Costa, L. F.
Lotufo, R. A.
Velastin, S. A.
dc.subject.por.fl_str_mv crowd monitoring
texture analysis
topic crowd monitoring
texture analysis
description The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.
publishDate 1998
dc.date.none.fl_str_mv 1998-01-01
2014-02-26T17:19:30Z
2014-05-20T14:16:06Z
2014-02-26T17:19:30Z
2014-05-20T14:16:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRA.1998.722773
Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998.
http://hdl.handle.net/11449/24842
10.1109/SIBGRA.1998.722773
WOS:000076805000047
url http://dx.doi.org/10.1109/SIBGRA.1998.722773
http://hdl.handle.net/11449/24842
identifier_str_mv Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998.
10.1109/SIBGRA.1998.722773
WOS:000076805000047
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 354-361
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE), Computer Soc
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE), Computer Soc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128835231678464