On the efficacy of texture analysis for crowd monitoring
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/SIBGRA.1998.722773 http://hdl.handle.net/11449/24842 |
Resumo: | The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective. |
id |
UNSP_50132bcc8bc67b3367d4fe24202e580c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/24842 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the efficacy of texture analysis for crowd monitoringcrowd monitoringtexture analysisThe goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective.UNESP, DEMACIGCE, Rio Claro, SP, BrazilUNESP, DEMACIGCE, Rio Claro, SP, BrazilInstitute of Electrical and Electronics Engineers (IEEE), Computer SocUniversidade Estadual Paulista (Unesp)Marana, A. N.Costa, L. F.Lotufo, R. A.Velastin, S. A.2014-02-26T17:19:30Z2014-05-20T14:16:06Z2014-02-26T17:19:30Z2014-05-20T14:16:06Z1998-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject354-361http://dx.doi.org/10.1109/SIBGRA.1998.722773Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998.http://hdl.handle.net/11449/2484210.1109/SIBGRA.1998.722773WOS:000076805000047Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:37:50Zoai:repositorio.unesp.br:11449/24842Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:37:03.031096Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the efficacy of texture analysis for crowd monitoring |
title |
On the efficacy of texture analysis for crowd monitoring |
spellingShingle |
On the efficacy of texture analysis for crowd monitoring Marana, A. N. crowd monitoring texture analysis |
title_short |
On the efficacy of texture analysis for crowd monitoring |
title_full |
On the efficacy of texture analysis for crowd monitoring |
title_fullStr |
On the efficacy of texture analysis for crowd monitoring |
title_full_unstemmed |
On the efficacy of texture analysis for crowd monitoring |
title_sort |
On the efficacy of texture analysis for crowd monitoring |
author |
Marana, A. N. |
author_facet |
Marana, A. N. Costa, L. F. Lotufo, R. A. Velastin, S. A. |
author_role |
author |
author2 |
Costa, L. F. Lotufo, R. A. Velastin, S. A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Marana, A. N. Costa, L. F. Lotufo, R. A. Velastin, S. A. |
dc.subject.por.fl_str_mv |
crowd monitoring texture analysis |
topic |
crowd monitoring texture analysis |
description |
The goal of this work is to assess the efficacy of texture measures for estimating levels of crowd densities ill images. This estimation is crucial for the problem of crowd monitoring. and control. The assessment is carried out oil a set of nearly 300 real images captured from Liverpool Street Train Station. London, UK using texture measures extracted from the images through the following four different methods: gray level dependence matrices, straight lille segments. Fourier analysis. and fractal dimensions. The estimations of dowel densities are given in terms of the classification of the input images ill five classes of densities (very low, low. moderate. high and very high). Three types of classifiers are used: neural (implemented according to the Kohonen model). Bayesian. and an approach based on fitting functions. The results obtained by these three classifiers. using the four texture measures. allowed the conclusion that, for the problem of crowd density estimation. texture analysis is very effective. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-01-01 2014-02-26T17:19:30Z 2014-05-20T14:16:06Z 2014-02-26T17:19:30Z 2014-05-20T14:16:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRA.1998.722773 Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998. http://hdl.handle.net/11449/24842 10.1109/SIBGRA.1998.722773 WOS:000076805000047 |
url |
http://dx.doi.org/10.1109/SIBGRA.1998.722773 http://hdl.handle.net/11449/24842 |
identifier_str_mv |
Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings. Los Alamitos: IEEE Computer Soc, p. 354-361, 1998. 10.1109/SIBGRA.1998.722773 WOS:000076805000047 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sibgrapi '98 - International Symposium on Computer Graphics, Image Processing, and Vision, Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
354-361 |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE), Computer Soc |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE), Computer Soc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128835231678464 |